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Advanced Econometric Topics 1

1. Preliminaries

1.1. Why Demand Estimation?

Demand systems often form the bedrock upon which empirical work in industrial organization rests.1

IO theory is mostly concerned about the supply-side. However, costs are important determinants

of firm behavior which are usually unobserved. For instance, a fundamental issue is to measure

market power, which is measured by the price-cost margin, or the Lerner index, as

p−mc
p

. (1.1)

The problem is that we do not always have data on marginal costs. The “new empirical industrial

organization” (NEIO) literature is motivated by this data problem, where firms’ mark-ups are

obtained by estimating demand functions, and from these, mark-ups are then backed out. The

intuition of this approach is most easily seen in the monopoly case. Consider the monopolist’s

maximization problem,

max
p
pq(p)− c(q(p)) (1.2)

where q(p) is the demand curve faced by the firm, and the first order conditions (FOC) imply

q(p) + p
∂q(p)

∂p
=
∂c(q(p))

∂q

∂q(p)

∂p
= mc(q(p))

∂q(p)

∂p
. (1.3)

At the optimal price, we get the relationship,

(p∗ −mc(q(p∗))) = − q(p)

∂q(p)/∂p

∣∣∣∣
p=p∗

(1.4)

or equivalently,
p∗ −mc(q(p∗))

p∗
= − 1

η(p∗)
(1.5)

where η(p∗) = p
q(p)

∂q(p)
∂p

∣∣∣
p=p∗

is the price elasticity of demand. Thus, if can get a good estimate of

elasticity, we can infer the markup.

1Acknowledgements: These lecture notes are based on a number of sources and draw heavily from the following

articles/chapters: Cameron and Trivedi (2005, Chap. 6); Deaton and Muellbauer (1980, Chap. 3 & 5); Hausman

et al. (1994); Bokhari and Fournier (2013); Berry (1994); Berry et al. (1995); Ackerberg et al. (2007); Nevo (2000,

2001). In addition to these primary sources, I have also benefitted from presentations/lecture notes on the same

topics by other researchers who have generously put their slides on the internet. These sources include (1) Matthew

Shum (Lecture notes: Demand in differentiated-product markets); (2) Matthijs Wildenbeest (Structural Economet-

ric Modeling in Industrial Organization); (3) Eric Rasmusen (The BLP Method of Demand Curve Estimation in

Industrial Organization); (4) John Asker and Allan Collard-Wexler (Demand Systems for Empirical Work in IO);

(5) Jonathan Levin (Differentiated Products Demand Systems); (6) Ariel Pakes (NBERMetrics) and; (7) Aviv Nevo

(NBER Methods Lecture – Estimation of Static Discrete Choice Models Using Market Level Data). Finally, I am

also in debt to my colleague Franco Mariuzzo for providing significant feedback on these notes. All errors are mine.
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2 Demand Estimation (Advanced Econometrics)

This reasoning extends to oligopoly as well (covered later). Briefly though, when there are differen-

tiated products, we want to estimate the system of demand equations and infer the markups using

the full cross-elasticity matrix. These estimates can then be used in a variety of different contexts,

including merger simulations to predict post merger prices, estimating the value of a new goods (via

changes in consumer surplus), or other policy questions such as allowing direct to consumer adver-

tising or parallel trade for pharmaceutical products etc. The process thus begins with estimating a

system of demand equations.

Earlier empirical work focused on specifying representative consumer demand systems such that

they allowed for various substitution patterns, and were consistent with economic theory. These

methods included estimating the Linear Expenditure model (Stone, 1954), the Rotterdam model

(Theil, 1965; and Barten 1966), or the more flexible ones such as the Translog model (Christensen,

Jorgenson, and Lau, 1975), and the Almost Ideal Demand System (Deaton and Muellbauer, 1980a).

In these lecture notes, we will discuss details of the AIDS model but within the context of multistage

budgeting as well as variants of logit models derived from random utility/discrete choice models.

1.2. Estimation issues and approaches to demand estimation

Some common problems in demand estimation include endogeneity, multicollinearity, the dimen-

sionality problem, and accounting for observed and unobserved heterogeneity among consumers.

Depending on the context and the question, a researcher needs to be careful about choosing the

appropriate estimation methodology, as there are tradeoffs between how well different methods deal

with these issues and how relevant any given problem is with a context. The usual topology of

various approaches to demand estimation is along the following lines:

• Single vs Multi-products

• Product or Characteristics Space approach to estimation

• Representative vs Heterogenous Agents

Single vs. Multiproduct Systems. Most products have substitutes or complements and it

is often necessary to explicitly account for the substitution possibilities to adequately answer the

research question at hand. In the context of multiproducts, the researcher also has to face the

problem of dimensionality and multicollinearity. Consider a system of demand equations

q = D(p, z;θ, ξ), (1.6)

where q is a J×1 vector of quantities, p is a vector of prices, z is a vector of exogenous variables that

shift demand, θ are the parameters to be estimated, and ξ are the error terms. In a system with

J products, even with some simple and restrictive forms, the number of parameters to estimate
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Advanced Econometric Topics 3

is large. If for instance, D(·) is linear so that D(p) = Ap where A is a J × J matrix of slope

coefficients, then there are J2 parameters to estimate (plus additional ones due to the exogenous

variables z). Imposing the symmetry of the Slutsky matrix or adding up restrictions (Engle and

Cournout aggregation) reduces the number of parameters to be estimated, however, the essential

problem, that the number of parameters increases in the square of the number of products, remains.2

This problem of too many parameters is augmented when we attempt to estimate flexible demand

systems.

Further, as prices of related products often move together, lack of precision of estimated parameters

due to multicollinearity is another typical problem. Similarly, when cov(p, ξ) 6= 0, so that the prices

are endogenous, the econometrician has to find at least as many instruments as the number of

products. It is usually difficult to find instruments that are both exogenous and will not generate

moment conditions that are nearly collinear.

One way of avoiding the problem of estimating too many parameters is to start with more restrictive

forms. Consider starting with a constant elasticity of substitution (CES) utility function and then

deriving a demand system from it. For J different products, the CES utility function takes the form

u(q; ρ) = u(q1, q2, . . . , qJ ; ρ) =
( J∑

i

qρi

)1/ρ
(1.7)

where ρ is the parameter of interest that measures the elasticity of substitution. The demand for a

representative consumer is then given by,

qj(p, I; ρ) =
p
1/(1−ρ)
j∑J
i p

ρ/(1−ρ)
i

I j = 1, . . . , J. (1.8)

In the system above, I is the income of the representative consumer, and the dimensionality problem

is solved by imposing symmetry between different products, i.e. all the cross-price elasticities are

now the same. Specifically, the cross elasticity between products i and j is the same as between k

and j for all combinations of i, j, k,

∂qi
∂pj

pj
qi

=
∂qk
∂pj

pj
qk

∀i, j, k. (1.9)

Thus, the while the dimensionality problem is solved – instead of estimating J2 parameters, we

need to estimate only a single parameter – it comes at the high cost of imposing such a restrictive

2The Slutsky equation decomposes the change in demand for good j as a response to a change in the price of good

i as
∂qj
∂pi

=
∂hj

∂pi
− qi ∂qj∂y where qj and hj are the marshallian and hicksian demand functions respectively for product

j, and y is the income or total expenditure, and the relation holds for all i, j = 1, . . . , J and i 6= j. The adding up

restrictions are the Engle aggregation (
∑

j sjηjy = 1) and Cournot aggregation (
∑

j sjηji = −si) where ηji is the

cross price elasticity of product j with respect to price of i, ηjy is the income elasticity of product j and si, sj are

the expenditure shares.
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4 Demand Estimation (Advanced Econometrics)

substitution pattern which may not be very realistic as some products may be much closer in

attributes to each other than other products and their cross price elasticities may be much higher.

An alternative to the single parameter of the CES utility function is the logit demand (Anderson,

de Palma, and Thisse, 1992). This has a richer substitution pattern, and is derived from

u(q; δ) =
J∑
j

δjqj −
J∑
j

qj ln qj. (1.10)

Elasticities in this model depend on market shares (given by J number of parameters δj) but again

not on the similarities among the products.

Other ways researchers sometime get around this dimensionality problem is by imposing more

structure in the form of functional form assumptions on utility function – separability and multistage

budgeting – which leads to “grouping” or “nesting” approaches. In this case, we group products

together and consider substitution across and within groups as separate things. This however

requires some ex-ante assumptions about how a consumer chooses a particular product. We consider

this approach in more detail later on.

Endogeneity. To see why prices can be endogenous, consider a simple linear demand/supply

model for a single homogenous product over T markets, where aggregate demand/supply relations

are given by

qdt = β10 + γ12pt + β11x1t + ξ1t,

pt = β20 + γ22q
s
t + β22x2t + ξ2t,

qst = qdt .

(1.11)

In the equations above, the error terms are such that3

E(ξ1t|xt) = 0, E(ξ2t|xt) = 0,

E(ξ21t|xt) = σ2
1, E(ξ22t|xt) = σ2

2

E(ξ1txt) = 0, E(ξ2txt) = 0,

and E(ξ1tξ2t|xt) = 0

(1.12)

where xt = [1 x1t x2t]. Thus, the error terms in the two equations are mean zero with variances

σ2
1, σ

2
2, the x1 and x2 are exogenous variables (demand and supply shifters) and suppose that the

error terms across the two equations are uncorrelated (i.e., E(ξ1tξ2t|xt) = 0). To see how endogeneity

3Since we have already made the stronger assumption that E(ξ1t|xt) = 0, technically we do not need to explicitly

make the assumption that E(ξ1txt) = 0, since the latter is implied by the former assumption of zero conditional

mean due to law of iterated expectations. Nonetheless, I include it just to be clear.
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Advanced Econometric Topics 5

arises, explicitly solve for the reduced form equilibrium values of q∗ and p∗. If we solve the equations

above (dropping the t subscript), we get

q∗ =
β10 + β20γ12
1− γ12γ22

+
β11

1− γ12γ22
x1 +

γ12β22
1− γ12γ22

x2 +
ξ1 + γ12ξ2
1− γ12γ22

p∗ =
β20 + β10γ22
1− γ12γ22

+
β11γ22

1− γ12γ22
x1 +

β22
1− γ12γ22

x2 +
γ22ξ1 + ξ2
1− γ12γ22

(1.13)

which shows that p∗ is a function of ξ1 (and ξ2) and hence an OLS estimation of the demand equation

above (regress q on p, x1) will result in an inconsistent estimate of γ12 and other parameters. Similar

issue applies to OLS estimation of the supply equation. It is instructive to explicitly compute the

conditional covariance (conditional on xt) between p and ξ1 (or between q and ξ2 for the supply

equation). To do so, first note that conditional on xt,

p∗ − E(p∗) =
γ22ξ1 + ξ2
1− γ12γ22

and ξ1 − E(ξ1) = ξ1.

(1.14)

Thus, conditional on xt

cov(p, ξ1) =
γ22

1− γ12γ22
σ2
1 +

E(ξ1ξ2)

1− γ12γ22
. (1.15)

Note that even if the error terms across the two equations were uncorrelated (E(ξ1tξ2t|xt = 0),

the covariance between p and ξ1 would still not be zero. On the other hand, if γ22 is zero, q does

not appear in the supply equation, i.e., it is a triangular system of equations and OLS estimation

is fine as long as E(ξ1tξ2t|xt) = 0. Finally, for completeness – complete system of equations, i.e.,

the number of equations are equal to the number of endogenous variables – we also require that

γ12 6= 1/γ22.

For future reference, we can re-write the system in (1.11) in matrix notation. Let

y′t =
[
qt pt

]
,xt =

[
1 x1t x2t

]
, ξ′t =

[
ξ1t ξ2t

]
,Γ =

[
1 −γ22
−γ12 1

]
and, B =

β10 β20
β11 0
0 β22

 (1.16)

then, the system of equations above can be written as

y′tΓ− xtB = ξ′t, (1.17)

so that the reduced form equation is

y′t = xtΠ + v′t where Π = BΓ−1 and, v′t = ξ′tΓ
−1. (1.18)

Note that in the equation above we are takeing the inverse of the Γ. But the inverse exists if the de-

terminant (det(Γ) = 1−γ12γ22) is not zero, which goes back to the condition γ12 6= 1/γ22 mentioned
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6 Demand Estimation (Advanced Econometrics)

above. The moment restrictions in (1.12) (in general we do not need to impose E(ξ1tξ2t|xt) = 0)

are
E(ξt|xt) = 0, E(ξtξ

′
t|xt) = Σ

E(vt|xt) = 0, E(vtv
′
t|xt) = Ω

where Ω = (Γ−1)′ΣΓ−1.

(1.19)

In this case, estimation can proceed with IV/2SLS (or 3SLS for joint estimation), where the demand

equation is estimated using x2t as the instrument, and supply equation is estimated using x1t as

the instrument. If either β22 = 0 or if data on x2t is not available, demand equation cannot be

identified/estimated consistently (vice versa for supply equation). Since the x’s are exogenous

variables, they can serve as instruments.

• x2t are cost shifters. They affect production costs. Correlated with pt but not with ξ1t: use

as instruments in demand function.

• x1t are demand shifters. Affect willingness-to-pay, but not a firm’s production costs. Corre-

lated with qt but not with ξ2t: use as instruments in supply function.

Instrument: The broadest definition of an instrument is a variable z such that for all possible

values of z:

Pr[z|ξ] = Pr[z|ξ′]. (1.20)

But for certain values of X we have

Pr[x|z] = Pr[x|z′]. (1.21)

So the intuition is the that z is not affected by ξ, but has some effect on x. The usual way to

express these conditions is that an instrument is such that: E[zξ] = 0 and E[xz] 6= 0.

Product vs Characteristics Space. There are two general approaches to estimating demand.

Product space is more natural in the sense that consumers have preferences over products, and

those preferences lead to demand at the product level. The alternative, the characteristics space

approach (Lancaster, 1966; McFadden, 1973), views products as bundles of characteristics and

consumers have preferences over those characteristics. Thus each individual’s demand for a given

product is just a function of the characteristics of the product. To be specific, we can think of a set

of products (Toyota Minivan, Lexus SUV, etc.) or we can think of them as a collection of various

properties (horsepower, size, color, etc.). In general, demand systems in characteristic space are

approximations to product space demand systems and hence, we can either model consumers as

having preferences over products, or over characteristics (note that not all of the characteristics need

to be observed and may form part of the error term). This changes the “space” in which we analyze

School of Economics University of East Anglia



Advanced Econometric Topics 7

the demand system. When working in characteristics space, a researcher begins by specifying a

utility function over the characteristics of the product and then derives observable market demand

from it. We will study this in more detail later in the context of discrete choice models. The two

approaches to demand estimation have tradeoffs in terms of relative strengths and weaknesses in

terms of how they deal with different issues, some of which are discussed below.

• For large number of products (say J = 50), the product space approach leads to the dimen-

sionality problem mentioned earlier, and may require grouping/nesting these products. By

contrast, if we can reduce J products to just a few K characteristics, and the preferences over

those characteristics are, say normally distributed, then we have to estimate K means and

K(K+1)/2 covariances. If there were no unobserved characteristics, then K(1+(K+1)/2)

parameters would suffice to analyze own and cross price elasticities for all J goods.

• If there are too many characteristics (K is large), then the problem of too many parameters

re-appears as in the product space, and we need data on each of these characteristics. A

solution is to model some of them as unobserved characteristics – but this leads to the

endogeneity problem if the unobserved characteristics (think product quality) are correlated

with the price, which they usually are.

• A related problem is that of weak instruments in the product space approach. Consider the

case of demand equation for the quantity of the jth product. In product space, it would be

a function of all other prices, so that qj = f(p1, . . . , pJ) and we have J such equations, one

for each product. The estimation is thus in ‘wide form’ and we need to find instruments

for each of these prices. In the characteristics space approach, the fundamental issue is the

same, but often the resulting functional form is such that estimation is done in ‘long form’,

i.e., the left hand side of the equation, which is typically shares, is also a function of prices,

but appears in the equation as a single variable sj = f(pj) and there are J such rows per

market. Thus, in the product space, when we do a 2SLS estimation, where the first stage

involves regressing each price variable on the exogenous set of instruments, we effectively

have to estimate J number of first-stage regressions. By contrast, in the characteristics

space, we have to do only one first-stage regression as data on all prices is a single column

vector that is regressed on a column vector of instruments. Effectively then, the first stage

regressions can exhibit weak instruments property in the product space set up while they

may not exhibit such a property in the characteristics space approach.

• If we are interested in the counterfactual exercise to assess the welfare impact of a new

introduction in an ex-ante period (say a new proposed generic drug or a me-too drug), it is

difficult to do so in the product space (we can do it using ex-post data though), but it is

easier to do this exercise using the characteristic space approach. This is because if we have

estimated the demand system using the characteristic approach, and we know the proposed

School of Economics University of East Anglia



8 Demand Estimation (Advanced Econometrics)

characteristics of the new good, we can, in principle, analyze what the demand for the

new good would be. Note however that if the new good is totally different from products

already in the market, i.e., has very different (and new) properties, characteristics space

approach may not help either (e.g., could we have predicted the demand for laptops based

on the characteristics of desktop computers, or for a new drug which proposes treatment of

a formally un-treatable disease?)

• Most of the characteristics space estimation, at least on aggregate data, does not easily lend

to analyzing products which are used in bundles or as complements. This is an on-going

area of research.

Representative or Heterogenous Consumer. Consider the demand function of single product

j in market t for a representative consumer, given by

qjt = γj + αjpjt + xjtβj + ξjt, (1.22)

where xjt is a vector of product characteristics and ξjt are the unobserved components of demand.

The interest is in estimating αj and demand elasticity (for instance, if the demand function is

isoelastic so that the left hand side of the equation above is ln(qjt), then the elasticity is εjjt = αjpjt).

Even though product specific intercepts γj (willingness to pay) have been included in the model,

they are demand shifters, and as such do not change the sensitivity to price depending on the level

of income or other demographic characteristics such as family size. However, micro studies show

that the price coefficient depends in an important way on income/wealth, i.e., lower income people

care more about price. Consequently, if the income distribution varies across the markets, we should

expect the price coefficient to vary across these markets, and we need to find a way to allow for it.

One could make γj to be a function of income, but they are still demand shifters and do not change

the sensitivity to price. Similarly, other demographic differences may be important to model as

well. Such a representative consumer model does not allow sensitivity to price to vary by income.

One could potentially include some ad-hoc interaction terms between average values of demographic

variables in market t with price (and other product characteristics) but unless such interactive terms

can be derived from the utility function, the equations being estimated may not represent demand

derived from a consumer’s utility maximization problem. To make it a heterogenous agent model,

it is more typical to build a micro model where the parameters that enter the utility function of a

consumer – say γj and αj – vary over individuals and are perhaps functions of their demographics.

In that case, the demand equations to be estimated would end up looking something like

qjt =

∫
γijdG(γij) +

∫
αijpjtdF (αij) + xjtβj + ξjt (1.23)

where γij and αij are person and product specific random intercepts and slope coefficients, with

known or assumed distribution functions γij ∼ G (γ|τ) and αij ∼ F (α|θ), and where θ and τ are
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Advanced Econometric Topics 9

parameters to be estimated and are functions of demographic variables. This is called a random

coefficients model and we will take up this approach within the context of discrete choice modeling.

2. Product Space Approaches

The main method we will look at in the products space approach is one which solves the dimen-

sionality problem by dividing the products into small sub-groups and then allowing some relatively

flexible substitution patterns between the products within a group. To this end, it would be useful if

we could break down the overall consumer decision problem into separate parts, some of which could

be estimated separately. This is the issue of separability in demand theory. A related problem

is that of aggregation, which considers the relationship between individual consumers’ behavior

and aggregate consumer behavior (which is the sum of individual behavior over all individuals).

This is a longstanding issue in demand theory, i.e., how to relate the demand system of a group of

consumers to the underlying demand of individual consumers. There is no reason why aggregate

data, or any data that are an average over many people should conform to a theory of consumer

behavior that focuses on individual people or households. Nonetheless, study of aggregate data may

allow us to say something about individual behavior. Thus, when working with aggregate data, one

can ask whether there are assumptions on preferences such that aggregate demand is generated by

a “representative consumer” with “rationalizeable” preferences. We start with the latter issue.

2.1. Homothecity, Gorman Polar Form and Aggregation

Homothecity. We start with a very simple assumption on preferences, that they are homo-

thetic, and see what it may imply about demand curves. Preferences (�) are homothetic if

tq1 � tq2 ⇔ q1 � q2 for any t > 0 i.e., the consumer is indifferent between bundles tq1 and

tq2 whenever they are indifferent between bundles q1 and q2. Thus, with homothetic preferences,

there is only one indifference curve and any indifference curve is a radial blowup of another, and all

indifference sets are related by proportional expansion along rays. The implication is that marginal

rates of substitution are unaffected by equal proportional changes in all quantities, so that income

expansion paths are straight lines through the origin. In terms of utility functions, preferences are

homothetic if and only if they are of the form

u(q) = F (f(q)) wheref(·) is a function such that f(tq) = tf(q), (2.1)

and F (·) is a monotone increasing function. Thus, the utility function must admit a function that

is homogenous of degree one (the f(·)) and since utility functions are only defined upto monotonic
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10 Demand Estimation (Advanced Econometrics)

transformations, then we may as well write the utility function to be just u(q) = f(q) where the

latter is, as before, homogeneous of degree one.

Consider the consumer’s expenditure minimization problem min p · q s.t. u(q) = f(q) = u. Since

the function is homogenous of degree one, doubling q will double the target utility, but doubling q

means doubling the expenditure. This means that if e(p, u) = q∗ · p is the minimum expenditure

for target utility u, then for a target utility of tu, the minimum expenditure is e(p, tu) = tq∗ · p =

te(p, u). Now If the initial target utility is equal to 1, then by letting t = u, we can write e(p, u) =

ue(p, 1) and hence, for homothetic utility preferences, the expenditure function is of the form

e(p, u) = ub(p), (2.2)

where b(p) is some linearly homogenous and concave function of prices. Similarly, in terms of indirect

utility V (p, y) and demand functions (hicksian, h(p, u) and marshallian q(p, y)), a homothetic utility

function implies the following forms

V (p, y) =
y

b(p)
, qhj (p, u) = u

∂b(p)

∂pj
, qj(p, y) = yqj(p),

where y =
∑
j

pjqj is the total expenditure.
(2.3)

A leading example of homothetic preference is the cobb-douglas utility function given by u(q) =

qβ11 q
β2
2 . . . , qβJJ where the associated demand functions are of the form

qj = y
1

pj

βi∑J
j βj

.

The demand for each good is proportional to expenditure (income), or alternatively, the Engel curve

for each good is a straight line going through the origin. To see this more clearly, take the log of

qj(p, y) in (2.3), so that ln qj = lny + ln qj(p), we see that the expenditure elasticity of good j is

always one

ηj =
∂lnqj
∂ ln y

= 1 ∀j = 1, . . . , J.

This is known as the expenditure proportionality, which is equivalent to the requirement that

budget shares (wj =
pjqj
y

) of all commodities are independent of the level of total expenditure

(income) so that a consumer always spends a constant proportion of their income on a product,

even though income may be varying across different consumers. Thus, with homothetic preferences,

all expenditure elasticities are equal to one – a result that is contradicted by most empirical studies.

A result that follows is that with identical homothetic preferences, aggregate demand is “as if”

there were a single consumer with the same preferences and the total income of all consumers. Note

also that demand for each good is independent of prices of other products implying that cross-price

elasticities are zero.
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Advanced Econometric Topics 11

Quasi-Homothecity and Gorman Polar Form. A less restrictive form is that of quasi-

homotheticity. In this formulation, a fixed expenditure element (a(p)) is added to the expenditure

function in equation (2.2) so that it is now given by

e(p, u) = a(p) + ub(p). (2.4)

This form is called the Gorman Polar Form. The term a(p) represents the subsistence level of

expenditure when u = 0 and b(p) is the marginal cost of utility. For the expenditure function to

be concave in prices it is necessary and sufficient for a(p) and b(p) to be concave in prices. The

associated indirect utility and demand functions (per the usual derivations) take the forms

V (p, y) =
y − a(p)

b(p)
and qj(p, y) = aj(p) +

bj(p)

b(p)

[
y − a(p)

]
where

aj(p) =
∂a(p)

∂pj
and bj(p) =

∂b(p)

∂pj
.

(2.5)

For the indirect utility function above, a(p) is interpreted as the subsistence spending amount and

b(p) is a price index that deflates income/expenditure over and above the subsistence level. Before

moving on, it is worth rewriting (2.5) in an alternative form, as it is sometimes useful and because we

will later use the alternative form. Note that we can define A(p) = 1
b(p)

and B(p) = −a(p)
b(p)

in which

case the indirect utility can be written as V (p, y) = A(p)y +B(p). In this case qj(p, y) = aj(p) +

bj(p)B(p) + bj(p)A(p)y. Now if we further define αj(p) = aj(p) + bj(p)B(p) = aj(p)− βj(p)a(p)

and βj(p) = bj(p)A(p) =
bj(p)

b(p)
, then (2.4) and (2.5) can be expressed as

e(p, u) = a(p) + ub(p)

V (p, y) = A(p)y +B(p)

qj(p, y) = αj(p) + βj(p)y, where,

A(p) =
1

b(p)
, B(p) = −a(p)

b(p)
and,

αj(p) =
∂a(p)

∂pj
− βj(p)a(p) and, βj(p) =

1

b(p)

∂b(p)

∂pj
.

(2.6)

The budget share equations in this case are given by a weighted average of two terms

wj =
(a
y

)
(
pjaj
a

) +
(

1− a

y

)
(
pjbj
b

), (2.7)

where if a = y (subsistence level is equal to the entire income) the budget share of good j is equal

to just
pjaj
a

, and if expenditure is much larger than the subsistence level (so a/y ≈ 0) then the

share is given by
pjbj
b

. In aggregate, the expenditure patterns are a weighted average of value shares

appropriate to very rich and very poor consumers. As with homothetic preferences, Engle curves are

still linear but they do not go through the origin anymore. Consequently, although homotheticity
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12 Demand Estimation (Advanced Econometrics)

implies unitary income elasticities for all commodities, quasi-hometheticity implies elasticities that

only tend to unity as total expenditure increases. This is a significant generalization/improvement

over the previous case, but still restrictive as it unlikely to be true for narrowly defined commodities.

Even for broad commodities such as food, household budget studies tend to give nonlinear Engel

curves (we will get to that further below).

A leading example of quasi-homothetic preferences is the Stone-Geary utility function given by

u(q) =
∏J

j (qj −αj)βj or equivalently as u(q) =
∑J

j βj ln(qj −αj) with
∑J

j βj = 1 where, as before,

the αj are the subsistence levels for each good. For this utility function, the implied expenditure,

indirect utility and demand functions are

e(p, u) =
J∑
i

pjαj + u
J∏
j

p
βj
j , V (p, y) =

y −
∑J

j pjαj∏J
j p

βj
j

,

and qj(p, y) = αj + βj
y −

∑J
j pjαj

pj

which are of the same general forms as discussed above (i.e, a(p) =
∑J

i pjαj and b(p) =
∏J

j p
βj
j ).

Starting with the expenditure function, a(p) =
∑J

i pjαj is the fixed expenditure for good j (with

no substitution) plus a term that allows utility to be bought at a constant price per unit (b(p) =∏J
j p

βj
j ). Since β′s add up to one, the later term can be thought of as a weighted geometric mean

of the prices, and hence a price index representing the marginal cost of living. Similarly, in the

indirect utility function, we get the interpretation of ‘real’ expenditure: since α′s are the subsistence

level, the discretionary levels (y −
∑J

j pjαj) are deflated by the price index to give a real measure

of welfare. Finally, note that in the demand function, the consumer obtains the subsistence level

αj of product j and the residual income (y−
∑J

j pjαj) is allocated between different goods in fixed

proportions βj. The parameters βj are called the marginal budget shares. Finally, note that the

expenditure on good j is simply

pjqj = pjαj + βj(y −
J∑
j

pjαj)

and is called the linear expenditure system (LES) (expenditure is linear in prices and income)

which is easy to estimate, and has been very popular in empirical studies for this reason. It is

completely characterized by the marginal budget share and subsistence level parameters, requir-

ing estimation of 2J parameters, (2J - 1) of which may be chosen independently: compare that

to the more general case of estimating J2 + J parameters (own and cross-price elasticities and

income/expenditure elasticities), or, if adding up, homogeneity, and symmetry restrictions are im-

posed, there are (2J − 1)(J/2 + 1) parameters to be estimated. Nonetheless, LES comes with its

own short comings. If concavity of the expenditure function is allowed, then by construction all

cross price elasticities are positive and hence the system cannot be used if some of the products are

School of Economics University of East Anglia



Advanced Econometric Topics 13

complements. Additionally, it turns out that there is an approximate proportionality between own

price and expenditure elasticities.

Aggregation. Aggregate demand data raises the problem as to whether the aggregate demand

function is consistent with consumer theory. This problem is referred to as the “aggregation prob-

lem”. To overcome the aggregation problem, certain conditions are necessary under which we can

treat aggregate demand estimations as resulting from the behavior of a single utility maximizing

consumer (exact aggregation). Suppose there are N consumers (or households) that face the same

prices but differ only in the incomes or expenditures on different products so that the demand for

good j for the nth individual is of form

qin = gjn(p, yn). (2.8)

Then the average demand q̄j – aggregated by adding up quantities over all individuals and dividing

by N – is given by some function fj as

q̄j = fj(p, y1, y2, . . . yN) =
1

N

N∑
n

gjn(p, yn). (2.9)

Exact aggregation is possible if we can write (2.9) in the form

q̄j = gj(p, ȳ) where ȳ =
1

N

N∑
n

yn. (2.10)

Note that while (2.9) depends on the distribution of expenditures (incomes) y1, y2, . . . , yN , equation

(2.10) does not depend on its distribution. This implies that for the equation to hold, any real-

location of income from one individual to another will not change the market demand. But this

can only happen if the J different marginal propensities to spend are identical for all N consumers.

Thus, both the high and low income individuals must allocate changes in income in exactly the

same way. In turn, this implies that the general function in (2.8) must be linear in yn, that is, for

some function αjn and βj of p alone, be of form

qjn(p, yn) = αjn(p) + βj(p)yn. (2.11)

Thus, if the aggregate (average) demand is a function of prices and average income, as in (2.10), then

the underlying individual demand must be of form given by (2.11). But this is the same demand

function from quasi-homothetic preferences as in (2.6) with a subscript n for the nth consumer, and

αj and y both vary over consumers, but importantly, βj does not vary over consumers (i.e, person

specific α(p) but identical β(p)). Conversely, if the nth consumer has quasi-homothetic preferences
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14 Demand Estimation (Advanced Econometrics)

with demand given by (2.11), then the average demand – aggregated via adding up quantities over

all individuals and dividing by N – is

q̄j =
1

N

N∑
n

qjn(p, yn)

= αj(p) + βj(p)ȳ, where

αj(p) =
1

N

N∑
n

αjn(p), and ȳ =
1

N

N∑
n

yn.

(2.12)

Thus, the aggregate demand is also quasi-homothetic and (2.11) is necessary and sufficient for

(2.10). Note however that, the forms above are arising only due to aggregation requirements, and

have nothing to do with requiring aggregate utility maximization. Suppose now that individuals

maximize utility and the individuals demand function is of form (2.11). Gorman showed that quasi-

homothetic demand of the form above is generated by consumer with the expenditure function given

by

en(p, un) = an(p) + unb(p), (2.13)

i.e., expenditure is of (Gorman) polar form with subscript n in equation (2.6). Infact, Deaton and

Muellbaur show that it is a ‘if and only if’ condition (see p. 151 and exercise 6.3). Similarly, the

average of the expenditure functions in (2.13) is

ē(p, un) = ā(p) + ub(p), (2.14)

and corresponds to expenditure function for the average demand function in (2.12). Hence, if indi-

viduals maximize utility, and preferences are such that they satisfy the exact aggregation condition,

then the average demand function will be consistent with utility maximization.

Nonlinear Aggregation. The aggregation given above leads to the linear Engel curves. Muell-

bauer (1975,1976) introduced exact nonlinear aggregation by starting with budget shares rather

than with quantities, so that aggregation is over the budget shares of different consumers. The

aggregate budget share of the jth product w̄j, is defined as a weighted average of individual shares

wjn with weights given by the share of each individual in total expenditure on good j. Specifically,

let the average budget share of good j be given by

w̄j =
pj
∑

n qjn(p, yn)∑
n yn

=
∑
n

( yn∑
n yn

)
wjn. (2.15)

In general, w̄j is a function of prices and each individual’s total expenditure/income. If we restrict

w̄j to be some function of prices and average expenditure ȳ, it leads back to linear aggregation case

discussed above. Thus, Muellbauer instead makes w̄j a function of prices and y0, which is the total
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income/expenidture of a representative consumer and may itself be a function of the distribution

of individual expenditures as well as of prices,∑
n

( yn∑
n yn

)
wjn = wj(y0(y1, . . . , yJ ,p),p). (2.16)

If the average share holds as the above given function, then the aggregate demand can be thought

of as from a utility maximizing representative consumer with total income of y0 and facing prices p.

Formally, the representative consumer exists if a indirect utility function ψ(p, y) and a corresponding

expenditure function e(p, u) can be defined so that for some utility u0 = ψ(p, y0), we get

w̄j = wj(p, uo) =
∂ ln e(p, uo)

∂ ln pj
=
∑
n

( yn∑
n yn

)∂ ln en(p, un)

∂ ln pj
(2.17)

where the en(p, un) is the nth consumers expenditure function with utility un = ψn(p, yn). This rep-

resentative budget share function shows that, although expenditure redistribution happens among

the consumers, the representative consumer utility function, u0, does not change. Therefore, this

function can capture the change of un or different preferences among consumers while keeping u0

constant. It turns out that such a representative consumer (and the assumed cost function) exists

only if the preferences are such that the expenditure function of each individual has the form

en(p, un) = θn(un, a(p), b(p)) + φn(p) (2.18)

where a(p), b(p) and φ(p) are homogenous of degree 1 in prices, θn( ) is homogenous in a(p) and

b(p) and,
∑

n φn(p) = 0. If we sum this expenditure function over N , the representative consumers

function is

e(p, uo) =
1

N

∑
n

cn(p, un) (2.19)

and the average budget share (given by partial of log expenditure with respect to the partial of log

price of good j) is

w̄j =
∂ ln θ

∂ ln a

∂ ln a

∂ ln pj
+
∂ ln θ

∂ ln b

∂ ln b

∂ ln pj
. (2.20)

Since θn( ) is homogenous degree 1 in a(p) and (b), we have

∂ ln θ

∂ ln b
= 1− ∂ ln θ

∂ ln a
(2.21)

and hence w̄j can be written as

w̄j = (1− λ)
∂ ln a

∂ ln pj
+ λ

∂ ln b

∂ ln pj
where λ =

∂ ln θ

∂ ln b
= λ(p, y0). (2.22)

The term λ(p, y0) signifies that ∂ ln θ/∂ ln b is a function of uo and p because θ is a function of u0 and

p and we can substitute u0 using the indirect utility function ψ(p, y0). The expenditure function

(2.18) is called the Generalized Gorman Polar Form and the overall approach is referred to as

Generalized Linearity (GL). This approach goes beyond the usual formulation of y0 = ȳ and allows

one to incorporate features of expenditure distribution into the demand functions rather than just its
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16 Demand Estimation (Advanced Econometrics)

mean value. Deaton and Muellbauer consider a special case, in which the representative consumers

expenditure level (income) y0 is assumed to depend on the distribution of individual expenditures

(incomes) but not on prices, which leads to particularly useful class of demand equations. If the

representative expenditure is independent of prices, then the individual expenditure functions take

the form

en(p, un) = kn · [a(p)α(1− un) + b(p)αun]1/α, (2.23)

where kn is a constant that varies over individuals, and α is a constant that is the same for everyone.

With the expenditure function above, the budget share equations are said to have the price in-

dependent generalized linear form (PIGL). For the representative consumer, the expenditure

function takes the form (kn is normalized to one for the reference person)

e(p, u0) = [a(p)α(1− u0) + b(p)αu0]
1/α, (2.24)

and as α→ 0, the representative expenditure function becomes (called PIGLOG)

ln(e(p, u0)) = (1− u0) ln(a(p)) + u0 ln(b(p)). (2.25)

Differentiating log of expenditure function with respect to the log of price of good j gives the

nonlinear Engel curves as

wj =

γj + ηj(y/k)−α PIGL

γ∗j + η∗j ln(y/k) PIGLOG
(2.26)

where γ’s and η’s are functions of prices only, k varies over individuals (or households) and can be

used to capture demographic effects. Thus, by using a demand/Engle curve that is derived from a

PIGL/PIGLOG expenditure function, we are assured that the market demand functions have the

same desirable properties as the individual demand functions.

Almost Ideal Demand System (AIDS). The PIGL/PIGLOG family generates exact nonlinear

aggregation over individuals or households with nonlinear Engel curves. The merits of representation

of market demand as if they were the outcome of decisions by a rational representative consumer

has made for extensive application of this class of models. A specific application comes from a

second-order Taylor series expansion of equation (2.25) so that the first and second derivatives of

the expenditure function with respect to prices and utility (i.e., ∂e/∂pj,∂e/∂u, ∂2e/∂pjpi,∂
2e/∂upj

and ∂2e/∂u2) can be set equal to those of any arbitrary expenditure function at any point. This is

called a flexible functional form. To this end, Deaton and Muellbauer suggest functional forms for

a(p) and b(p) in (2.25) which result in a flexible system they call the ‘almost ideal demand system’,
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where

ln a(p) = α0 +
∑
j

αj ln pj +
1

2

∑
j

∑
k

γ∗jk ln pj ln pk

ln b(p) = ln a(p) + β0
∏
j

p
βj
j

(2.27)

so that the AIDS expenditure function is given by

ln e(p, u) = α0 +
∑
j

αj ln pj +
1

2

∑
j

∑
k

γ∗jk ln pj ln pk + uβ0
∏
j

p
βj
j (2.28)

with parameters αj, βj, and γ∗jk. The expenditure function will be linearly homogenous in p as long

as
∑

j αj = 1,
∑

j γ
∗
kj =

∑
k γ
∗
kj =

∑
j βj = 0. The budget shares of good j can be derived in the

usual way (partial of log expenditure with respect to partial of price of good j) which gives the

AIDS demand functions in budget share form as

wj = αj +
∑
k

γjk ln pk + βj ln(y/P )

where P is a price index defined by

lnP = α0 +
∑
k

αk ln pk +
1

2

∑
i

∑
k

γki ln pk ln pi

(2.29)

and where γjk = 1
2
(γ∗jk + γ∗kj). The restrictions on the parameter of the cost function impose

restriction on the parameters of the AIDS demand system (2.29) given by

J∑
j=1

αj = 1
J∑
j=1

γjk = 0
J∑
j=1

βj = 0

∑
k

γjk = 0 γjk = γkj

(2.30)

Provided the restrictions above hold (or are imposed), (2.29) represents a system of demand func-

tions which add up to total expenditure (
∑
wj = 1), are homogeneous of degree zero in prices and

total expenditure taken together, and satisfy Slutsky symmetry and give nonlinear Engle curves.

2.2. Separability and Multi-Stage Budgeting

The key idea is to solve the dimensionality problem by dividing products into smaller subgroups and

allowing flexible substitution between them. In order to make this consistent with theory, we need

two related, but different assumptions on consumer preferences regarding separability and multi-

stage budgeting. Briefly, separability refers to the case when a consumer’s preferences for products

of one group are independent of product specific consumption of products from other groups. Multi-

stage budgeting refers to when a consumer (or household) can allocate their total expenditure on

different goods in sequential stages, represented as a utility tree, where in the first stage, the total

current expenditure is allocated to broad groups of products (food, housing, entertainment) followed
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18 Demand Estimation (Advanced Econometrics)

by allocation of expenditures within each broad group (e.g., meats, vegetables, etc. within the food

group). We discuss further each of these below.

Separability. Preferences for products of one group are independent of product specific consump-

tion of products from other groups. Thus,

u(q1, . . . , qj) = f [v1(q(1)), . . . , vk(q(k)), . . . vK(q(K))], (2.31)

where (q1, . . . , qj) = (q(1),q(2), . . . ,q(k)) i.e., the set {q(j)} is a partition of (q1, . . . , qj) and there

are K < J partitions and f(·) is an increasing function of sub-utility functions v1, . . . , vk defined

over the partitions. The groups could be broad categories such as food, shelter, etc. or within a

class of related products it could be sub groups such as type of food (meat, vegetables, etc.). Note

that this does not remove the dimensionality problem but does lessen it. For example, for a linear

demand system, the total number of parameters reduces from J2 + J (additional J parameters are

for income) to J2/K +K2 number of parameters (for J = 20 products and K = 10 subgroups, we

go from a total of 420 parameters to 140 parameters).

While the number of parameters are reduced, separability does impose restrictions on substitution

patterns between products in different groups. For the utility function given in (2.31), the implied

subgroup demand functions – conditional demand functions – for all products j in group G are of

the form

qj = g(yg,pg), (2.32)

where yg =
∑

i∈G piqi is the total expenditure on products in group G and pg is the vector of prices

of these products. Let sij = ∂qhi /∂pj be the terms of the Slutsky matrix (i.e., partials of the hicksian

demand function with respect to prices), then for any two product i ∈ G and j ∈ H where H 6= G,

sij = µGH
∂qi
∂y

∂qj
∂y

= λGH
∂qi
∂yg

∂qj
∂yh

where λGH = µGH
∂yg
∂y

∂yh
∂y

.

(2.33)

The quantity µGH summarizes the interrelation between groups and shows that the assumption

of weak separability across two groups of goods, plus the assumption that expenditures on both

groups of goods rises as total expenditures increases, implies that for any two goods in two different

groups, good i in group G and good j in group H, all possible pairs of such goods are either

substitutes or complements. For example, if one group is fruit and another group is dairy products,

and fruits and dairy products are normal goods, then either all fruit and all dairy products are

complements or all fruit and all dairy products are substitutes. The proportionality factor λGH is

the compensated derivative of expenditure on group G with respect to a proportional change in all
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prices in group H (i.e., λGH =
∑

j∈H pj
∂yg
∂pj

∣∣∣
u=const

), and is thus the intergroup substitution term

when each group is defined as a Hick’s aggregate with fixed relative prices within the group. If there

are K total groups, then we can write a K × K matrix from the λ′s that is interpretable as the

Slutsky substitution matrix of the group aggregates. Thus, weak separability results in a two-tier

structure of substitution matrices: there are K completely general intragroup Slutsky matrices with

no restrictions on substitutions within each group, but between groups substitution is limited by

(2.33).

The above form of separability is called the weak form. When the marginal rate of substitution

between any two goods belonging to the same group is independent of the consumption of goods

within the other groups, it is consider as weak separability of preferences. By contrast, if the

marginal rate of substitution between any two goods belonging to two different groups is independent

of the consumption of any good in any third group, this separability is called strong separability or

block additivity.4 The strong form is when

u(q1, . . . , qj) = f [v1(q(1)) + . . .+ vk(q(k)) + . . .+ vK(q(K))], (2.34)

and f ′(·) > 0. In turn, the equivalent form of (2.33) is given by

sij = µ
∂qi
∂x

∂qj
∂x

, (2.35)

where note that µ is independent of groups to which i and j belong.

Multi-stage Budgeting. Consumers can allocate total expenditures in stages, starting with the

top level group and then to any subgroups or sub-subgroups within them. At each stage, information

appropriate for that stage only is required, i.e., the allocation decision is a function of only that

group’s total expenditure and price indexes for the subgroups and not of prices or price indexes of

products in the other groups. Thus, if the first stage consists of broad categories (food, housing,

entertainment) then the consumer decides how much of the budget to allocate to each of these

categories depending on three price indexes and not individual prices of types of food items etc.

Then, within the food category, the consumer decides how much to spend on different food items

(or subgroups) based on the total amount allocated for food and prices of individual food items (or

price indexes if there are further subgroups with the food group). Similarly, allocations are done

within other groups (housing, entertainment) and the process repeats at a third level if there are

subgroups (for instance, within foods group, may have subgroups of meat, vegetables, etc., and

then within any of these subgroups there are individual items).

4Note that some authors refer to this form as just ‘additive’ separability (without the use of the word block), but

technically that is the case when there is only one good in each group.
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Thus the consumer can allocate the expenditures to the subgroups in sequential stages. However, all

these sequential allocations must equal those that would occur if the consumers utility maximization

problem was done in one complete information step. Because expenditure allocation to any good

within a group can be written as a function only of the total group expenditure and the prices of

goods within that group, the demand for any good belonging to the group must also be expressed

as a function only of total expenditures on the group and the prices of goods within the group.

Weak separability and multi-stage budgeting are closely related concepts but are not the same nor

does one imply the other. However, weak separability is necessary and sufficient for the last stage of

multi-stage budgeting: separable preferences do not imply multi-stage budgeting but the last stage

does imply weak separability. Thus, if a subset of products appear only in a separable sub-utility,

then the quantities demanded for these products can be written as a function of expenditure on the

group and the prices of individual products within the group. As an example, say there are only

three food items (meat, vegetables and drinks) and these food items in the overall utility function

appear only as part of separable utility function

u(q1, . . . , qm, qv, qd, . . . , qj) = f [v1(q(1)), . . . , vF (qm, qv, qd), . . . , vK(q(K))]. (2.36)

Then, if the consumer maximizes the above utility function u( ) subject to the budget constraint, it

must be that v1, v2, vf , . . . , vk are each maximized subject to the amounts spent on groups 1, 2, . . .

(if this were not so, it would mean that v1, v2, vF , . . . , vk could be increased without violating the

budget constraint and since f [ ] is an increasing function, it means that utility was not maximized to

start with). Hence the expenditures on individual components of the food group (meat, vegetables

and drinks) must be the outcome of maximizing vF (qm, qv, qd) subject to pmqm + pvqv + pdqd = yF

which gives the demand for any specific food item as

qj = g(yF , pm, pv, pd) j ∈ {m, v, d}, (2.37)

where yF is the total expenditure on the food items. Conversely, one can also show that existence

of these subgroup demand functions implies weak separability.

While weak separability is necessary and sufficient for the last stage of multi-stage budgeting, and

one can proceed with group specific demand functions as above, the allocation of total budget to

different groups at higher stages requires further restrictions on preferences, or on stronger notions

of separability and on composite commodity theorem. To be able to do upper level allocation, there

must be an aggregate quantity and price index for each group which can be calculated without

knowing the choices within the group. A useful set of requirements is that (1) the overall utility is

separably additive in the sub-utilities, and that (2) the indirect utility functions for each group are

of the generalized Gorman polar form.
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3. Estimation Details with Multistage Budgeting

Hausman, Leonard, and Zona (1994), Hausman (1996), Ellison et al (19xx) use multistage budgeting

to construct a multilevel demand system for differentiated products. These applications involve

a three-stage system where the top level corresponds to overall demand for the product (beer,

pharmaceutical drugs or RTE cereals in the three papers above). The middle level consists of

demand for different market segments. For instance, in the demand for beer, the middle segment

consists of four groups of beer – premium beer, light beer, imported beer and non-premium beer,

while in the RTE cereal paper, the middle segments are family, kids and adults cereals. The bottom

level segment involves a flexible brand demand system corresponding to the competition between

the different brands within each segment. Similarly, Bokhari and Fournier (2013) use a four stage

system where the top level consists of aggregate demand for drugs used in the treatment of ADHD.

The second level segments by the types of molecules used in different drugs (four different groups

of molecules). The third level further segments the market by the form of the drug, i.e., if it is 4hr,

8hr or a 12hr effect drug. Finally, at the bottom level, different brands and generics are considered

within each molecule-form segment of the market. See figure below.

Figure 1. Taxonomy of ADHD drugs by Molecule, Form and Brand Names
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Note: Generics refer to several manufacturers for each molecule and form given in the column. There are no generic versions of

Concerta and Adderall XR during the study period.

3.1. Specifications

For each of these stages a flexible parametric functional form is assumed. The choice of func-

tional form is driven by the need for flexibility, but also requires that the conditions for multistage

budgeting are met.
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Bottom Level. A typical application has the AIDS model at the lowest level. The demand for

product i in segment fm, which consists of Ifm number of products, in area a at period t is given

by

Level 1 (Bottom):

siatfm = αifm + βifmln(
Rfmat

Pfmat
) +

Ifm∑
j=1

γijfm lnPjatfm + xiatfmλifm + ϕiatfm

(3.1)

where siatfm is the revenue share of product i (i.e., share within segment fm in market at) and

is a function of Ifm number of prices (log prices of other products in the segment, lnPjatfm),

total expenditure and a price index for the segment fm (Rfmat and Pfmat) and other exogenous

variables (xiatfm) which may be varying by product, market or segment and may include terms like

demographic variables, time trends, area fixed effects or any observable product characteristics if

they vary by markets (if we include area and time dummies, then αifm can be alternatively written

as αiatfm). Note that there are as many equations as the number of products in segment fm, and

one has to estimate a system of such equations for each segment, either jointly (all equations from

all segments together) or on a segment-by-segment basis if for some reason data does not allow

joint estimation of all segments. As discussed earlier, this system defines a flexible functional form

that can allow for a wide variety of substitution patterns within the segment. It has two additional

advantages over other flexible demand systems (like the Rotterdam system or the Translog model):

(1) it aggregates well over individuals; and (2) it is easy to impose (or test) theoretical restrictions,

like adding-up, homogeneity of degree zero and symmetry. To impose the restrictions, we require

(for each segment)
Ifm∑
i=1

αifm = 1

Ifm∑
i=1

γikfm = 0

Ifm∑
i=1

βifm = 0∑
k

γikfm = 0 γikfm = γkifm

(3.2)

where the last share equation per segment is not estimated as the shares must add up to one (recall

that the revenue shares are shares relative to total spending in this segment and not total spending

on all drugs).

Deaton and Muellbaur’s exact price index Pfmat is given by

lnPfmat = α0fm +

Ifm∑
i

αifm lnPiatfm +
1

2

Ifm∑
i

Ifm∑
k

γkifm lnPkatfm lnPiatfm (3.3)

and since it involves the parameters that need to be estimated, AIDS estimation requires non-linear

estimation methods. In practice however, Deaton and Muelllbaur suggest using the Stone price

index

lnPfmat =

Ifm∑
i

siatfm lnPiatfm (3.4)
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which makes estimation much simpler – setting aside the issue of endogeniety due to the correlation

of prices and the error term in equation (3.1), which we discuss later – the system of equations can

be estimated via OLS or SUR. In general, researchers have often found that results do not seem to

be too sensitive regardless of whether the exact price index is used or the Stone index is used (this

does not mean that one should not check within their own application).

Note however that by using the Stone price index, even if the original prices were not endogenous,

we are introducing an artificial endogeneity, as equation (3.1) now involves shares on both the left

and right hand side of the equation. To overcome this difficulty, Hausman and colleagues suggest

using an area specific average value of siatfm in the Stone index construction in (3.4), where the

average is over the multiple years. To be clear, in (3.4), they replace siatfm with s̄iafm so that the

value is different for each city but the same for all periods. In these applications, the choice of a city-

specific average over time is dictated, in part, due to the fact that the data consists of a few cities

but over many periods (monthly or quarterly observations for a few years). Bokhari and Fournier

(2013), instead use s̄itfm , i.e., period specific average, so that each time period has different value,

but is the same for all cities. This choice is dictated by two reasons. First, they have the opposite

situation in terms of observations with annual sales data for four years but disaggregated by many

geographic areas (counties in US) and second, because different drugs are introduced in the market

in different years, and when they are introduced in a give year, they reach all the geographic areas

simultaneously. Taking the average of shares over years for a given geographic area would would

require including zero shares in the average for the periods when the drug was not available in the

market. Bokhari and Fournier also verify that the results are not too different regardless of if one

uses s̄iafm or s̄itfm if the data is restricted to periods when all drugs are on the market.

Middle level(s). At the next level up (the middle level, or level 2), demand captures the allocation

between segments and can again be modeled using the AIDS specification, in which case the demand

specified by equation (3.1) is used with both expenditure shares and prices aggregated to a segment

level. The prices are aggregated using either equations (3.3) or (3.4). However, if the latter is used,

Bokhari and Fournier suggest using siatfm for the purpose of creating a price index for the upper

level rather than s̄atfm or s̄itfm . An alternative is the log-log equation used by Hausman, Leonard,

and Zona (1994) and Hausman (1996) and is given by

Level 2 (Middle):

ln(Q[fm]at) = A[fm] +B[fm] ln(Rat) +
FM∑
n=1

Γ[fm]n lnPnat + x[fm]atλ[fm] + ξ[fm]at

(3.5)

where (suppressing subscripts at for areas and periods) q[fm] is the aggregate quantity of the [fm]

bottom level segment, i.e., total quantity of RTE cereals for the family, kids or the adults segments
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in market at (city and quarter) and P[fm] is the price of each of these [fm] segments, written as

lnPn in the equation above, where n is an indexing number for the lower level [fm] segment. Thus,

these segment level prices are the price indexes from the lower level equations and are computed

using equations (3.3) or (3.4) as discussed earlier (with the caveat that we use actual lower level

shares rather than their average values over area or periods to pass on to the higher level). The

variable Rat is the total expenditure by market on all related products. For instance, it is the sum

of total sales of RTE cereals over the the three segments, kids, family and adults. Finally, x[fm]at

are the exogenous variables that are segment specific characteristics – if they are different for each

market – or just demographic variables by markets. Again, area and period specific fixed effects (or

time trends instead of the latter) can be alternatively written as A[fm]at. Note that the number of

equations to be estimated is equal to the number of lower level segments.

Since the lower level of the demand system is AIDS, which satisfies the generalized Gorman polar

form, the preferences of the second level should be additively separable (i.e., overall utility from

ready-to-eat cereal or all ADHD drugs should be additively separable in the sub-utilities from the

various subsegments), in order to be consistent with exact two-stage budgeting. Neither the second

level AIDS, nor the log-log system satisfy this requirement (Deaton and Muellbauer also discuss

approximate – instead of exact – two-stage budgeting, and show that if one uses the Rotterdam

model, approximate two-stage budgeting implies that higher stages also have Rotterdam functional

form). Also, in order for exact multistage budgeting to hold to the next level of aggregation,

discussed later, these preferences should be of generalized Gorman polar form.

Before moving on to the discussion of the top level equation, note that Bokhari and Fournier (2013)

have two middle level segments which differentiate drugs by forms within molecules (level 2) and

by molecules among all ADHD drugs (level 3). At level 2, they again use an AIDS specification

and at level 3 they use a log-log specification like the Hausman level 2 equation. Accordingly, their

two middle level equations are

Level 2 (Middle):

ufatm = afm + bfm ln(
Rmat

Pmat
) +

Fm∑
h=1

gfhm lnPhatm + xfatmλfm + µfatm

Level 3 (Middle):

ln(Qmat) = Am +Bm ln(Rat) +
M∑
n=1

Γmn lnPnat + xmatλm + ξmat.

(3.6)

In the level 2 equations above (suppressing subscripts at for exposition), ufm and Phm are the

revenue share and price of form f within molecule m where, under the Stone price index version,

the latter is given by equation (3.4) – ln(Pfm) =
∑Ifm

j=1 sifm ln(Pjfm ) – and is the share weighted

sum of the log prices of products within the form f . To be clear, this is the price index used in

School of Economics University of East Anglia



Advanced Econometric Topics 25

bottom (level 1) equations. However, the terms Rm

Pm
are the total expenditures from all forms within

molecule m, and a price index for molecule m where the later is computed (using Stone index form)

as

ln(Pm) =
Fm∑
h=1

ufm ln(Phm). (3.7)

For level 2, one needs to estimate as many equations as there are forms per molecule (Fm), and

repeat the process for each molecule. For instance, if there are four molecules, and each admits

up to three forms, then a total of four sets of system equations, with each set consisting of three

equations need to be estimated. Again, depending on the data, the estimations can be joint for all

segments, or segment by segment, and restrictions can be imposed within each segment much like

the lower levels.

Level 3 is an aggregation from level 2, so that ln qm is the aggregate quantity for segment m and is

the sum of quantities over all forms within this molecule. Similarly, lnPn is the price of molecule

n used earlier in level 2 and is given by (3.7). Total number of equations to be estimated equals

the number of upper level segments, e.g., total number of molecules and the rest is the same as

discussed earlier in the context of middle level equation (3.5).

Top level. Finally, the top level is the demand for the entire set of subsegments (RTE cereal,

beer, ADHD drugs etc.) and is typically specified as

Level 4 (Top):

lnQat = A+B ln(Yat) +G lnPat + xatλ+ ζat
(3.8)

where qat is the total quantity, Yat is the real income, xat are the demand shifters and Pat is the

overall price index for these products, given by share weighted sum of (log) prices at the previous

level and given by (again suppressing subscripts at),

ln(P ) =
M∑
m=1

vm ln(Pm) (3.9)

where vm is the revenue share and Pm is the price index for molecule m computed earlier in (3.7).

Note that this form does satisfy additive separability, which is required for exact two-stage budget-

ing.

Conditional and Unconditional Elasticities. The multi-budgeting process allows estimation

of the conditional demand functions (conditional on expenditures on the segment) at the lower

levels and the cross-price elasticities are limited to within the segment. Nonetheless, from these

conditional demand estimates, and estimates of the upper level equations, it is possible to derive the

unconditional cross-price elasticities across the full range of products in different segments, albeit
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subject to the cross segment restrictions noted earlier in section 2.2. For the four level multi-stage

process above, the conditional and unconditional elasticities are given below.

Conditional on segment expenditure Rfm (in market at), price elasticity of a product is

∂lnQifm

∂lnPkf ′m′
=

1

sifm

{(
− βifm s̄kf ′m′ + γijf ′m′

)
· 1[f ′ = f,m′ = m]

}
− 1[i = k, f ′ = f,m′ = m],

(3.10)

where 1[·] is the indicator function. Thus, elasticities conditional on Rfm are zero across products

in different f-m segments. Note that the subscript at has been suppressed in the equation above

but is present on all quantities, shares, prices etc. and s̄kf ′m′ is either s̄ktf ′m′ or s̄kaf ′m′ depending

on whichever one was used in the Stone price index in level 1 share equations. Similarly, elasticity

at level 2 with respect to the price index for the segment and conditional on segment revenue Rm

in market at (where the market subscripts have been suppressed), has a similar formula as for the

bottom level (since both are in AIDS form) and is given by

∂lnQfm

∂lnPf ′m′
=

1

ufm

{(
− bfmūf ′m′ + gfhm′

)
· 1[m′ = m]

}
− 1[f ′ = f,m′ = m], (3.11)

and the conditional cross price elasticity of forms in different level 3 segments (i.e., for forms in

different molecules) is zero. Price elasticities at level 3 (for example, at the molecule level), are

just the Γmn parameters in level 3 equation, and similarly, elasticity with respect to price for the

aggregate product is the value of the parameter G in top level equation.

Given the parameters of the conditional demand equations and shares of products, the unconditional

elasticity (for the four level system) can be computed as

∂lnQifm

∂lnPkf ′
m′

=
(

1 +
βifm
sifm

)
s̄kf ′

m′

[gff ′
m′

ufm
+ ūf ′

m′

]
· 1[m = m′]

+
(

1 +
βifm
sifm

)
s̄kf ′

m′

[bfmūf ′
m′

ufm
+ ūf ′

m′

]
Γmm′

+
1

sifm

{
γikf ′

m′
− βifm s̄kf ′

m′

}
· 1[f ′ = f,m′ = m]

− 1[i = k, f ′ = f,m′ = m].

(3.12)

3.2. Instruments

In an earlier section we discussed how endogeneity can arise in the context of a competitive single

product demand-supply model, where due to the simultaneity, the price and the error term in

the demand equation are correlated (see equation (1.15)). This basic idea extends to a variety

of differentiated products pricing models. Let the demand for the ith product be given by qi =

Di(p, zi; ξi), where ξi is the error term and consists of unobserved product characteristics, and zi is
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the vector of exogenous demand shifters (say the observed product characteristics). If there are L

firms, and the lth firm produces a subset Ll of the products, then it maximizes its joint profit over

these products as

Πl =
∑
r∈Ll

(pr − cr)qr(p, zr, ξr), (3.13)

where cr is the constant marginal cost of the rth product. Under Nash-Bertrand price competition,

price pi of any product i produced by firm l satisfies the first order condition

qi(p, zi; ξi) +
∑
r∈Ll

(pr − cr)
∂qr(p, zr; ξr)

∂pi
= 0. (3.14)

Then the equilibrium price for product i would be a function of its marginal cost and a markup

term, and in matrix form (for all equilibrium prices) is given by

p = c + Ω−1q(p, z; ξ), (3.15)

where Ω is defined such that Ωri = −Ori
∂qr(p,zr;ξr)

∂pi
and O is 1/0 joint ownership matrix with ones in

the leading diagonals and in r, i position if these products are produced by the same firm and zeros

everywhere else. As can be seen, the markup term is a function of the same error terms, and hence

generally prices will be endogenous, so that OLS/SUR estimation will lead to biased estimates of

the demand parameters.

The usual starting place for demand side instruments is to use cost shifters (terms that affect c,

such as cost of raw materials) that are uncorrelated with demand shocks. These can work well for

homogenous products, but in the case of differentiated products, we would need costs shifters that

vary by individual brands, which are often very difficult to obtain. However, if such cost shifters

can be found that are uncorrelated with demand side shocks and they vary by individual brands,

then they would be good instruments.

In the face of this difficulty, IO literature has often used two types of instruments which have grown

in popularity and are described below (this is not an endorsement to blindly apply these instruments

as they may or may not be applicable in a given situation).

The first, due to Berry (1994) builds on Bresnahan’s (1981) assumption that the location of products

in a characteristics space is determined prior to the revelation of consumer’s valuation of the unob-

served product characteristics. BLP use this assumption to generate a set of instrumental variables.

Specifically, they use the observed product characteristics (excluding price and any other endoge-

nous characteristics of the product), the sums of the values of the same characteristics of other

products offered by that firm, and the sums of the values of the same characteristics of products

offered by other firms. Consider the case when there are two firms, X and Y and each is producing

three products A,B,C and D,E,F respectively. Suppose further that each of these products have two

observable characters, S (say, package size, which is the number of pills in a box) and T (number of
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times a pill must be taken during a day for a standard diagnosis). Then for the price of A, which

is produced by firm X, there are 6 potential instruments:

• SAX and TAX – the values of S and T of product A

• SBX + SCX and TBX + TCX – the sum of S and T over the firms two other products B and

C

• SDY +SEY +SFY and TDY +TEY +TFY – the sum of S and T over the competitors products

D,E and F

Similar instruments can be constructed for prices of other products. The main advantage of this

approach (if valid) is that it gives instruments that vary by brands. Nonetheless, problems arise if

the assumption that the observed characteristics are uncorrelated with observed characteristics is

not valid. This could happen, for instance, if the observed characteristics are changing over time,

and the change in observed characteristics is for the same unobserved factors that determine price.

Another potential issue arises if brand dummies are included in the estimation, since then it must

be the case that there is variation in products offered in different markets, else there will be no

variation between the instruments in these markets.

A second set of instruments is due to Hausman et al. (1994) and has been used in several papers.

Hausman uses the panel nature of data and the assumption that prices in different areas (cities)

are correlated via common cost shocks, to use prices from other areas as instruments for prices in

a given city. The identifying assumption is that after controlling for brand specific intercepts and

demographics, the city specific valuations of a product are independent across cities but may be

correlated within a city over time. Given this assumption, the prices of the brand in other cities

are valid instruments so that prices of brand j in two cities will be correlated due to the common

marginal cost, but due to the independence assumption will be uncorrelated with the market specific

valuation of the product.

To be clear, the general idea is the reduced form price of a product i in two cities, a = 1 and a = 2

at time period t, will be given by

ln pi1t = π1 ln cit + xi1tπ2 + vi1t

ln pi2t = π1 ln cit + xi2tπ2 + vi2t,
(3.16)

where cit is the common cost component of the price in two different cities and xiat are brand level

demand shifters (demographics, time trends) as well city specific brand differentials (intercepts

by brands and cities) due to differences in transportation costs or local wages. In general, the

error terms viat will be correlated with ϕiat in the equation (3.1), and hence OLS/SUR will give

inconsistent estimates. If however, vi1t is uncorrelated with vi2t, then city two’s prices will be

uncorrelated with the error term ϕi1t in the equation (3.1), and hence the instrument will be valid.
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Further, since the prices in the two cities are driven by the same underlying common costs cit, they

will be correlated to each other and hence relevant.

In addition to common cost shocks, the Hausman instruments also rely on no correlation between

vi1t and vi2t. However, this assumption may be invalid if the terms are related due to common

demand side shocks across the two cities. For instance, a national campaign will increase the

unobserved valuation of product i in both cities, thus violating the independence assumption.

4. Characteristic Space Approaches

The characteristics space approach starts with a consumer choosing a single product from a finite

set of goods. The model defines each product as a bundle of attributes (including price, which is

a special attribute), and consumers have preferences over these attributes. Consumers can have

different relative preferences, which gives rise to the random coefficients models, and they choose

the product that maximizes their utility subject to the usual constraints. This leads to different

choices by different consumers. Aggregate demand is then derived as the sum over individuals and

depends on the entire distribution of consumer preferences.

General Approach. Indirect utility for individual n for product j in market t is given by

unjt = U(xjt, ξjt, ynt − pjt,dnt,νnt, εnjt;θn), for j = 0, 1, 2, . . . , J. (4.1)

In the equation above, 0 refers to the ‘outside good’, chosen when the consumer does not purchase

any of the observed products. Price of the outside good is often considered to be exogenous or not

known and set to zero. The vector xjt and random variable ξjt are the observed and unobserved

(to the econometrician, but not to the consumer) product characteristics and do not vary over

consumers. The product characteristics, multiplied by the parameters θn determine the level of

utility for consumer n. The vectors dnt and νnt are vectors of observed and unobserved sources of

differences in consumer tastes. They do not enter the utility function directly, but rather enter into

the model by changing the value of the parameters of interest for each consumer. For instance, dnt

may be a vector of observed demographics (income, family size etc.), that effect the parameters

(marginal valuations) of product characteristics by individual, and change the value of θ for each

attribute of the product by individual n. Similarly, for each product attribute (including price) there

is an additional randomness to the marginal valuation by individuals and is captured by νnt. This

term is added into the model because there may be unobserved person specific characteristics that

affect their marginal valuation for an observed product characteristic. A specific example would be

the number of dogs a family owns that affects their marginal valuation of the size of a car that they

want to purchase, i.e., unobserved number of dogs owned by a family changes the coefficient on car
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size which is a variable part of xjt. Note that if xjt is a k − 1 vector of observed characteristics,

then νnt is a vector of length k (the additional dimension is for price). Thus, the coefficients

θn depend on dnt and νnt. Additionally, εnjt is a mean-zero stochastic term that enters directly

into the utility of product j for consumer n. This term captures the idiosyncratic variation in

consumer preferences by individual products, and effects the level of (normalized) utility associated

with a specific product j and varies by individuals. Just to be clear, note that for each consumer,

εnt = (εn0t, εn1t, . . . , εnJt) is a vector of error terms with the length equal to the number of products.

This term does not affect the value of the parameters θn (that’s what dnt and νnt are for). Finally,

ynt is the consumers income, but is often subsumed into either ν or in d, so that utility is modelled

explicitly depending on prices, i.e., unjt = U(xjt, ξjt, pjt,dnt,νnt, εnjt;θn). Utility of the outside

good is denoted as un0t = U(x0t, ξ0t,dnt,νnt, εn0t;θ) and is normalized to zero.

Consumers choose products that give them the highest utility. Thus, consumer n will choose product

j when unjt ≥ unlt for all l = 0, 1, . . . , J and l 6= j. Since the differences in consumer choices arise

only due to differences in the marginal valuations θn (which are themselves functions of dnt and

νnt), and the idiosyncratic terms εnjt, a consumer can be described as a tuple (d,ν, ε) which then

defines a set of individual attributes that lead to the choice of good j, given by

Ajt(xt,pt;θ) = {(dnt,νnt, εn0t, εn1t, . . . , εnJt) | unjt > unlt ∀ l = 0, 1, 2 . . . J, l 6= j}. (4.2)

where pt = (p0t, . . . , pJt)
′ and xt = (x0t, . . . ,xJt)

′. The set Ajt defines characteristics of the individ-

uals that choose brand j in market t. If there are no ties (or the probability of ties is zero), then

the market share of product j is just the probability weighted sum of individuals in the set Ajt.

Thus, if F (d, ν, ε) is the population joint distribution function, then the market share of product

j is the integral of this distribution over the mass of individuals in the region Ajt,

sjt(x,p;θ) =

∫
Ajt

dF (d, ν, ε). (4.3)

If the size of the market is M (total number of consumers) then the aggregate demand for the jth

product is Msjt(x,p;θ).

These will become clearer when we look at the specific cases. We consider two models below.

5. Standard Logit/Homegenous Tastes

Let the indirect utility for consumer n for product j in market t be given by

unjt = αn(yn − pjt) + xjtβn + ξjt + εnjt, where

n = 1, . . . , N, j = 0, 1, . . . , J, t = 1, 2, . . . , T, and

βn = β, αn = α, for all N.

(5.1)
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In this model we are assuming that there is no variation in tastes across consumers and the terms

dnt and νnt do not enter this model (but later on will make βn and αn functions of dn and νn

mentioned earlier). The vector xjt is a k − 1 dimensional vector of observable characteristics

(which may be varying by markets) and ξjt is a scalar that summarizes the unobservable (to the

econometrician) product characteristics, and neither of these terms varies over consumers. Thus, if

there are multiple unobserved characteristics, then we are assuming that they can be collapsed into

a single index whose value does not vary over consumers.

Equation (5.1) is an indirect utility function which can be derived from a quasilinear utility function

of the form U(q) = q0 + u1(q1) + . . . + uJ(qJ) which is maximized subject to the usual budget

constraint (
∑J

j=0 pjqj ≤ yn) and that
∑J

j=0 qj = 1. The outside option (product 0) is normalized

by assuming that the price and other characteristics are zero for this option so that

un0t = αyn + εn0t. (5.2)

The utility function in (5.1) can be written more compactly as just

unjt = αyn + δjt + εnjt, (5.3)

where δjt ≡ α(−pjt) + xjtβ + ξjt is the mean utility for product j in market t. Since income is

common to all options, and consumers only differ in the terms ε, the set of individuals choosing

product j is given by

Ajt(δt(xt,pt;α,β)) = {(εn0t, εn1t, . . . εnJt)|unjt > unlt ∀ l = 0, 1, 2 . . . J, l 6= j}. (5.4)

where δt = (δ0t, . . . , δJt)
′, and pt and xt are defined as before. For the logit model, we assume

that εnjt are independently and identically distributed (iid) and follow a Type-1 extreme value

distribution, given by

f(ε) = exp(−ε) exp(− exp(−ε)) and F (ε) = exp(− exp(−ε)), (5.5)

where f(ε) and F (ε) are the PDF and CDF of the random variable ε. In this case, the market share

of product j (and the probability that individual n chooses product j) is

sjt(δt) =

∫
Ajt

dF (ε) =
exp(δjt)∑J
j=0 exp(δjt)

. (5.6)

Note that income has dropped out of the equation for shares as it was common to all options. Due

to the earlier normalization δ0t = 0 (so that (exp(δ0t) = exp(0) = 1), the share equation above can

be written as

sjt =
exp(δjt)

1 +
∑J

j=1 exp(δjt)

s0t =
1

1 +
∑J

j=1 exp(δjt)
= 1−

J∑
j=1

sjt.

(5.7)
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Thus, sjt/s0t = exp(δjt), and hence

ln(sjt)− ln(s0t) = δjt ≡ α(−pjt) + xjtβ + ξjt (5.8)

can be estimated using linear regression methods. The dimensionality problem mentioned earlier,

i.e., that one needs to estimate parameters on the order of J2 to compute the full cross elasticity

matrix, has been reduced to estimation of just one parameter α, as the own and cross elasticities

can be computed using observed shares, prices and the value of α. The closed (logit) form for the

shares is due to both, the extreme value distribution, and the iid assumption. The latter, especially

the independence part of iid, causes serious limitations on the substitution patterns. Both the

estimation details and the limitations of the logit model are discussed below.

5.1. Elasticities and Substitution Patterns

The logit model suffers from the property known as the Independence of Irrelevant Alternatives

(IIA). To understand this, it is easiest to go back to the individual level probabilities of choosing a

product. When the error term is iid and has extreme value distribution (I am dropping the subscript

t for exposition), the probability that individual n chooses product j is given by (see (5.6))

Pr(j) =
exp(δj)∑J
j=0 exp(δj)

. (5.9)

The relative probabilities of options j and k are thus

Pr(j)

Pr(k)
=

exp(δj)

exp(δk)
= exp(δj − δk). (5.10)

This ratio does not depend on characteristics of any other alternative other than those of j and

k. This implies that the relative odds of choosing j over k are the same no matter what other

alternatives are available or what are the attributes of other alternatives (the values of δ′s). Since

the ratio is independent of the alternatives other than j and k, it is said to be independent of

irrelevant alternatives (and hence the term IIA).

In some situations this property is unrealistic (Chipman, 1960; Debreu 1960). Consider the famous

example of blue bus/red bus: A traveler can commute to work either by car (c) or by blue bus

(bb). Suppose further that it turns out (for simplicity) that Pr(bb) = Pr(c) = .5. Now suppose

that a new type of bus is introduced that is identical in all other respects to the existing blue bus

(fare, route, smell, time it takes to get to work, etc.,) except that it is red in color (rb). One would

expect that the new probabilities of travel model would be such that Pr(bb) = Pr(rb) = .25 and

Pr(c) = .5. Yet the logit model would predict that the substitution from the two old modes of

travel (blue bus or car) to the new mode of travel (red bus) are such that they would depend on the

ratio of old probabilities, and since they were equal, the new probabilities for each of the new modes
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would be Pr(bb) = Pr(rb) = Pr(c) = 1/3. This aggregated example exemplifies the implications

of IIA in a logit model.

This same issue embodies itself in terms of cross-elasticities of logit probabilities with respect to any

of the characteristics of the choices under consideration (see pp. 49-52 in Train). To see its impact

in terms of aggregate demand (based on logit model), compute the own- and cross-price elasticities

of shares in equation (5.6) or equation (5.8) with respect to prices. It is straight forward to see that

ηjkt =
∂sjt
∂pkt

pkt
sjt

=

−αpjt(1− sjt) if j = k,

αpktskt otherwise.
(5.11)

Note that the cross price elasticity between product j and k depends only on the prices and shares

of product k. In turn, it implies that the cross price elasticity of any two products - say product

j which is Coca Cola and product l which is Orange Cola, with respect to the price of product k

which is Pepsi Cola will be the same. Put another way, the logit model predicts that if the price

of Pepsi Cola increases by 1%, then ceteris paribus, the market shares of Coca Cola and Orange

Cola will increase by the same proportion regardless of the fact that Coca Colas and Pepsi Cola are

more like each other (blue bus/red bus) compared to Orange Cola (car). Clearly this is unrealistic

for many markets.

An additional issue with the logit-based elasticities is that of own price elasticity (or elasticity with

respect to any other characteristic). In most markets, the shares of any given product are likely to

be small, for instance if there are many differentiated products, or if the size of the potential market

is large. In this case, the own elasticity will be roughly proportional to the price of the product

(ηjjt ≈ −αpjt because (1 − sjt) ≈ 1). This means that if price increases, sensitivity to prices also

increases – but people who buy more expensive products may infact be less price sensitive compared

to those who buy less expensive products. Similarly, if as the price increases, so does elasticity, it

implies that the markups for cheaper priced products will be larger than those with higher priced

products (price-costs margin inversely related to own elasticities). Again, this may not be true

in some industries, for instance, in pharmaceuticals. Do we believe that markups are higher for

cheaper priced generics compared to the blockbuster patented and higher price drugs?

While the logit is clearly unrealistic in terms of implied substitution patterns, the main question

prior to shunning such a model is to ask, if in fact, you even need a more realistic substitution

pattern to answer the research question at hand. For example, what if you don’t care about the

cross-price elasticities as long as you can get decent estimates of own-price elasticities, and the

industry is such that the criticism about own elasticities above does not apply? In this case, the

ease of logit estimation may be quite appealing, and even if it is not, since it is cheap to estimate it,

it can still serve as a useful starting point for more elaborate estimations, which we consider next.
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5.2. Estimation Details

Outside Good. If we have aggregate sales data (quantities and prices), along with product

characteristics, equation (5.8) can be estimated by defining the dependent variable yjt as yjt =

ln(sjt) − ln(s0t). However, to operationalize it, we need to estimate the share of the outside good.

This is done by first defining the (potential) size of the market. Researchers have used different

definitions for it. Nevo (2001) defines the potential size of the market as one bowl of cereal per

day per person, BLP define it as total number of households, while Bresnahan et al (1997) define it

as the total number of office-based employees. In the example of ADHD drugs considered earlier,

one could define it as a 12-hr day-long coverage of a standard dose of ADHD drug – 3 × 30mg

strength of Ritalin IR (a 30mg pill covers about 4hrs of a day) which can be multiplied by a base line

candidate population, say 10% of all school aged children (current ADHD prevalence rates of whom

only 69% are given any ADHD drugs), and a smaller proportion of the older population. Once the

potential size of the market Mt is defined, then based on the observed values of q1t, . . . , qJt, one can

define the shares of the ‘inside’ goods s1t, . . . sJt relative to the market size as

sjt = qjt/Mt j = 1, . . . , J for all t = 1, . . . , T. (5.12)

Then, share of the outside good per market is just

s0t = 1−
J∑
j=1

sjt ∀t. (5.13)

With these definitions in place, estimation of equation (5.8), which I rewrite below,

ln(sjt)− ln(s0t) = δjt ≡ α(−pjt) + xjtβ + ξjt, (5.8)

is in principle, straight forward and can be estimated via OLS (ignoring endogeneity issues for the

moment) with data from even just one market. To see this more clearly, it is helpful to write

the equation in matrix form. Let y′t = (y1t, y2t, . . . , yJt) be a row vector (for market t) given by

y′t = ([ln s1t − ln s0t] , [ln s2t − ln s0t] , . . . , [ln sJt − ln s0t]) so that yt is a column vector of length J .

Similarly, let p′t = (p1t, . . . , pJt) and ξ′t = (ξ1t, . . . , ξJt) be row vectors with J entries for the tth

market. We already defined xjt as a row vector of observable characteristics of product j in market

t, i.e., xjt = (x1jt, x2jt, . . . , xKjt), thus let X′t = (x′1t,x
′
2t, . . . ,x

′
jt, . . . ,x

′
Jt) so that Xt is a J × K

matrix, such that each row is itself a k dimensional vector of observable product characteristics.5

5In an earlier section I stated that xjt is a k− 1 dimensional vector. However, here I am using it as k-dimensional

vector. This is because I do not want to write subscripts in the following equations that go up to K − 1, as the

notation becomes very cumbersome, and the equations too wide to fit easily on a page. Thus, for the next few

equations, pretend as if there were K observable characteristics (excluding price) and not K − 1. Alternatively,

where ever K appears in the subscript in the next two equations, replace it with K − 1.
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Then (5.8) can be written in ‘long’ form as

yt = (ln sjt − ln s0t) = α(−pt) + Xtβ + ξt ≡ δt
y1
y2
...
yJ


t

=


ln s1 − ln s0
ln s2 − ln s0

...
ln sJ − ln s0


t

= α


−p1
−p2

...
−pJ


t

+


x11 x12 . . . x1K
x21 x22 . . . x2K
...
xJ1 xJ2 . . . xJK


t


β1
β2
. . .
βk

+


ξ1
ξ2
...
ξJ


t

(5.14)

where subscript t outside the matrices is to highlight the matrix estimation within each market. As

long as the number of product characteristics is only a handful, say five, compared to the number of

total products, say 50, then the number of parameters to be estimated is seven (β, α and variance of

the error term in (5.8) to compute the variance-covariance matrix). This is not to suggest that you

should use data from just a single market, only that estimation is possible with just one market and

the form above shows more clearly how to organize the data in long form for logit estimation. When

we have data from multiple markets, long form data from each market can be vertically ‘stacked’.

Thus, equation above can be written in matrix notation as

y = α(−p) + Xβ + ξ ≡ δ


y11
y21
...
yJ1


...
y1t
y2t
...
yJt


...
y1T
y2T

...
yJT





=




ln s11 − ln s01
ln s21 − ln s01

...
ln sJ1 − ln s01


...

ln s1t − ln s0t
ln s2t − ln s0t

...
ln sJt − ln s01


...

ln s1T − ln s0T
ln s2T − ln s0T

...
ln sJT − ln s0T





= α




−p11
−p21

...
−pJ1


...
−p1t
−p2t

...
−pJt


...
−p1T
−p2T

...
−pJT





+




x111 x121 . . . x1K1

x211 x221 . . . x2K1
...

xJ11 xJ21 . . . xJK1


...

x11t x12t . . . x1Kt
x21t x22t . . . x2Kt

...
xJ1t xJ2t . . . xJKt


...

x11T x12T . . . x1KT
x21T x22T . . . x2KT

...
xJ1T xJ2T . . . xJKT






β1
β2
. . .
βk

+




ξ11
ξ21
...
ξJ1


...
ξ1t
ξ2t
...
ξJt


...
ξ1t
ξ2t
...
ξJt




(5.15)

where y,p and ξ are JT × 1 vectors, X is a JT ×K matrix, α is a scaler and β is K × 1 vector.

Instruments and Dummy Variables. The error term ξjt in equation (5.8) consists of the

the unobserved (to the econometrician) product characteristics reduced to a single index value.

As discussed in section 3.2 before, this term is likely to be correlated with the prices so that

cov(pjt, ξjt) 6= 0. As before, one needs to find instruments that are correlated with price but not

with any of the unobserved product characteristics – and without repeating the earlier discussion –

one can try the Hausman instruments (prices from other markets) and/or the BLP instruments (sum
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of observed product characteristics of own-firm other products, and of sum of product characteristics

from competitors) if they are suitable for the problem at hand.

Regardless of the instruments used, a first approach to consistent estimation would be to estimate a

fixed effects model with dummies for products (and markets). This of course requires that data be

available from multiple markets. Thus, with data available from multiple markets, one can estimate

via OLS

ln(sjt)− ln(s0t) = δjt = α(−pjt) + xjtβ + ξj + ξt + ∆ξjt (5.16)

where ξj is the brand fixed effect and ξt is the market fixed effect. In this case the identifying

assumption for OLS estimation is

E(∆ξjtpjt|xjt) = 0. (5.17)

A brand specific dummy variable captures all the observed characteristics of the product that do

not vary across markets, as well as the product specific mean of the unobserved characteristics, i.e.,

xjβ, where, note the missing market subscript of t from the vector x. Thus, the correlation between

prices and brand specific mean of unobserved quality is fully accounted for and does not require

an instrument. Once brand specific dummy variables are included in the regression, the error term

now is just the market specific deviation from the mean of the unobserved characteristics, and may

still require the use of instruments if the condition in equation (5.17) is not true.

Similarly, if the mean unobserved quality – where the mean is now across all brands – is different by

markets, then it too is fully accounted for by the market dummies. For instance, if the subscript t

for the markets is in the context of time periods, then this could be because the unobserved quality

for all products is improving over time (think computer quality over time). If the subscript t is in the

cross-sectional setting, then this may or may not make much sense, since by adding such dummies

to the equation, the researcher is effectively arguing that the unobserved quality components of all

brands in, Hooker, OK, are higher than those in Boring, OR. This maybe true if the products under

study require some additional local input for providing the product (radio channels with local DJs

and ads), or if shipping from long distance affects the quality of all products (fresh food), but not

if they are centrally produced (RTE cereals) and shipping does not impact quality.

Note that the use of brand dummies increases the number of parameters to be estimated by J (rather

than by J2), and may not be too serious an issue if the number of markets is large. A potentially

more serious difficulty is that the coefficients β cannot be identified if observed characteristics do not

vary by markets. Nevo (2001) points out that in fact they can be recovered using minimum distance

procedure by regressing the estimated brand dummy variables on the observed characteristics. For

instance, let bt be the J × 1 vector of brand dummies and let Xt be the J ×K matrix of observed

product characteristics and ξt be the J × 1 vector of unobserved product qualities, neither of which

vary by markets. Let also b̂ be the estimated values of coefficients (J×1) of the brand dummies and
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V̂ −1
b their estimated J × J variance covariance matrix, both of which are available from initially

estimating equation (5.16), either via OLS, or IV if prices were treated as endogenous. Then, the

estimates of β and ξ in equation

bt = Xtβ + ξt, (5.18)

can be recovered via GLS estimator

β̂ = (X′tV̂
−1
b Xt)

−1X′tV̂
−1
b b̂t, and ξ̂t = b̂t −Xtβ̂ (5.19)

where the latter is just the calculated value of the residual term from the regression above.

5.3. Nested Logit

One problem we saw with the simple logit model is related to the cross price elasticities, i.e.,

consumers substitute towards other brands in proportion to the market shares. Intuitively, if the

price of a product goes up, we would expect them to substitute towards other products that are

more similar to the original product. This IIA problem arose from the iid structure of the error

term in the logit model. Particulary, while consumers have different rankings of the products, these

differences arise only due to the iid shocks to the error term εnjt.

A solution to this problem is to make the random shocks to the utility correlated across products

by generating correlations through the error term, so as to effectively get rid of the independence

component. An example is the nested logit model in which products are grouped and εnjt is

decomposed into an iid shock plus a group specific component which results in correlation between

products in the same group. Thus, the basic idea is to relax the IIA by grouping products (similar

to the grouping idea in multilevel budgeting/AIDS we saw earlier), but within each group we have

a standard logit model, and products in different groups have less in common and are not good

substitutes.

Formally, the utility for consumer n for product j in group g is given by

unjt = δjt + ζngt(σ) + (1− σ)εnjt, (5.20)

where, as before, δjt = α(−pjt) + xjtβ + ξjt is the mean utility for product j common to all

consumers, εnjt is still the person specific iid random shock with extreme value distribution, but

ζngt is the person specific shock that is common to all products in group g. The distribution of

the group specific random variable ζngt depends on the parameter σ so that ζngt(σ) + (1− σ)εnjt is

extreme value. If σ approaches zero, the model is reduced to that of the simple logit case discussed

earlier while if it approached one, only the nests matter. As discussed in Berry (1994), the utility
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function (5.20) leads to a closed form logit equation for shares (much like the earlier one we saw)

with one additional term, and is given by

ln(sjt)− ln(s0t) = α(−pjt) + xjtβ + σ ln(sjt/sgt) + ξjt. (5.21)

In the equation above, the additional term ln(sjt/sgt) is the share of product j in group g. The

methods/issues vis-a-via definition of the outside good, use of product dummies, and endogeneity

of prices are all the same as those discussed earlier and hence won’t be repeated here. However, one

difference from the previous case is that even if prices are exogenous, the term ln(sjt/sgt) is clearly

endogenous and hence one needs to find an additional variable to instrument for this term.

5.4. Review of Generalized Methods of Moments (GMM)

Before turning to the more general model, the random coefficients logit, it is worth reviewing GMM

estimation as we will use it in a later section.

Suppose we want to estimate a simple linear model

yt = xtβ + ut, (5.22)

where xt is a 1 ×K vector (including the constant or the intercept term), β is a K × 1 vector of

parameters and ut is the usual error term. Suppose further that conditional on the values of the

regressors, the error term is mean zero so that E[ut|xt] = 0. This single conditional moment restric-

tion leads to K conditional moment conditions E[x′tut] = 0 due to the law of iterated expectations.

Thus, if the error has conditional zero mean, we get K equations of the form

E[x′t(yt − xtβ)] = 0. (5.23)

The method of moments (MM) estimator is the solution to the corresponding sample moment

conditions

1

T

T∑
t=1

x′t(yt − xtβ) = 0, (5.24)

which gives the MM estimator of β as

β̂MM = (
∑
t

x′txt)
−1
∑
t

x′tyt = (X′X)−1X′y, (5.25)

which is just the OLS estimator.

Consider next the case where we still want to estimate the equation (5.22), but where the error terms

are correlated with the variables xt, but that we have an additional set of exogenous variables zt that

are correlated with xt but not with the error terms so that E[ut|zt] = 0. Then, E[(yt−xtβ)|zt] = 0,
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and as before, we can multiply zt with the residual terms to get K unconditional population moment

conditions

E[z′t(yt − xtβ)] = 0. (5.26)

In this case the MM estimator solves the sample moment conditions given by

1

T

T∑
t=1

z′t(yt − xtβ) = 0, (5.27)

and if dim(z) = K, then this yields the MM estimator which is just the IV estimator

β̂MM = (
∑
t

z′txt)
−1
∑
t

z′tyt = (Z′X)−1Z′y. (5.28)

If however, dim(z) > K, (more potential instruments than the original number of regressors) then

there is no unique solution as there are more moment conditions than the number or parameters to

be estimated. In this case, the GMM estimator kicks in and chooses β̂ in such as way so as make

the vector T−1
∑T

t=1 z′t(yt−xtβ) as small as possible using quadratic loss. Thus, the GMM method

finds β̂GMM which minimizes the function

Q(β) =

[
1

T

∑
t

z′t(yt − xtβ)

]′
Φ

[
1

T

∑
t

z′t(yt − xtβ)

]
(5.29)

where Φ is a dim(z)× dim(z) weighting matrix.

In matrix notation define y = Xβ + u (where y and u are T × 1, X is T ×K and β is K × 1 as

before), and let Z be T ×R matrix, then
∑T

t=1 z′t(yt − xtβ) = Z′u and (5.29) becomes

Q(β) =

[
1

T
(y −Xβ)′Z

]
Φ

[
1

T
Z′(y −Xβ)

]
(5.30)

where Φ is a R × R full rank symmetric weighting matrix. To solve for β we can compute and

solve for the first order conditions, ∂Q(β)/∂β = 0. In the forgoing case of linear IV, the first order

conditions are
∂Q(β)

∂β
= −2

[
1

T
X′Z

]
Φ

[
1

T
Z′(y −Xβ)

]
= 0. (5.31)

These lead to the GMM linear IV estimator and its variance

β̂GMM = (X′ZΦZ′X)
−1

X′ZΦZ′y

V(β̂)GMM = T (X′ZΦZ′Z)
−1
(
X′ZΦŜΦZ′X

)
(X′ZΦZ′X)

−1
,

(5.32)

where Ŝ is a consistent estimate of

S = plim
1

T

∑
i

∑
j

[z′iuiujzj] . (5.33)
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Different choices of the weighting matrix Φ lead to different estimators. If the model is just identified

(R = K) and the matrix X′Z is invertible, then the choice of the weighting matrix Φ does not matter

as the GMM estimator is just the IV estimator:

β̂GMM = (X′ZΦZ′X)
−1

X′ZΦZ′y

= (Z′X)
−1

Φ−1(X′Z)
−1

(X′Z)ΦZ′y

= (Z′X)
−1

Z′y = β̂IV.

(5.34)

If R > K, and the errors are homoscedastic, then Φ = (T−1Z′Z)−1 and Ŝ−1 = [s2T−1Z′Z] leads to

the usual 2SLS estimator

β̂GMM = (X′PzX)
−1

(X′Pzy) = β̂2SLS

V(β̂GMM) = s2
(
X′Z(Z′Z)−1Z′X

)−1
where Pz = Z(ZZ′)

−1
Z′ and s2 = (T −K)−1

∑
t

û2t ,

(5.35)

and if the errors are heteroscedastic, then instead we can use

V(β̂GMM) = T
(
X′Z(Z′Z)−1Z′X

)−1 (
X′Z(Z′Z)−1Ŝ(Z′Z)−1Z′X

) (
X′Z(Z′Z)−1Z′X

)−1
and Ŝ = T−1

∑
t

û2tztz
′
t.

(5.36)

So far GMM is the same as 2SLS or IV. The optimal weighting matrix (optimal in the sense of

efficiecy/smallest variance) is one which is proportional to the inverse of S. The optimal GMM

two-step estimator (for the linear IV case) is when Φ = Ŝ−1

β̂OGMM =
(
X′ZŜ−1Z′X

)−1
X′ZŜ−1Z′y, (5.37)

where one has to first figure out a consistent value of Ŝ−1. One way to proceed is to use the 2SLS

as the first-step to estimate β̂ to compute the residuals as in the heteroscedastic case above, and

then proceed to construct the Ŝ−1 and then use it in (5.37) to compute the estimator. The variance

of the optimal GMM estimator is then given by

V(β̂OGMM) = T
(
X′ZŜ−1Z′X

)−1
. (5.38)

Often though, in the computation of V(β̂OGMM), one use an alterative version of Ŝ, say S̃, which is

computed as given in (5.36) but with the small difference that the residuals used in that equation are

not from those from the end of 2SLS estimation, but rather the residuals that result post computing

the optimal GMM estimator in (5.37).

This approach extends easily to the general case with other moment conditions as well. Let θ be a

q × 1 vector of parameters and h(w,θ) be an r × 1 vector function such that at the true value of

the parameter θ0, there are r moment conditions (r > q) give by

E [h(wt,θ0)] = 0, (5.39)
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and that the expectations are not zero if θ 6= θ0. The vector wt includes all observable variables,

including yt,xt and, zt. Then the GMM objective function (equivalent of (5.29)) is

Q(β) =

[
1

T

∑
t

h(wt,θ)

]′
Φ

[
1

T

∑
t

h(wt,θ)

]
, (5.40)

and the corresponding first order conditions are

∂Q(β)

∂β
=

[
1

T

T∑
t

∂ht(θ̂)′

∂θ

]
Φ

[
1

T

T∑
t

ht(θ̂)

]
= 0,

where ht(θ) = h(wtθ).

(5.41)

If ht(θ) = z′t(yt − xtβ) = z′tut then ∂h/∂β′ = −z′txt and the earlier results of linear IV follows.

Similarly, GMM also extends to non-linear models, where the error term ut may or may not be

additively separable. For instance, ut = yt − g(xt;θ) where g(·) is some nonlinear function but

the error term is additively separable, or non-separable so that ut = g(yt,xt;θ). Either way, if

E(ut|xt) 6= 0 but we have instruments available so that E(ut|zt) = 0, then the moment conditions

that follow are E(z′tut) = 0 and the GMM estimator minimizes the objective function

Q(β) =

[
1

T
u′Z

]
Φ

[
1

T
Z′u

]
. (5.42)

Unlike the linear case, the first order conditions do not give closed forms for the estimators.

5.5. Back to Logits

We saw earlier that standard logit can be estimated as a linear equation when the dependent

variable is defined as yjt ≡ ln sjt − ln s0t and the equation is given as yjt = α(−pjt) + xjtβ + ξjt.

When the price is correlated with the unobserved heterogeneity term ξjt, so that E(p, ξ) 6= 0 and we

have a set of instruments such that E(Zξ) = 0, then we can use the GMM/IV methods described

in the earlier section to estimate the parameters of the equation. For instance, equipped with a

set of instruments, this could be done in a straight forward way using equations (5.37) and (5.38).

However, the linear equation arose out of Berry’s (1994) inversion trick. It is worth while to go back

to the basic logit probability model and work it out (again) as we will need to use a more detailed

version of this basic trick when we do not have closed forms given above.

To start with, note that in each market t we can observe the actual shares of each product (i.e., that

is part of our data). Let the actual observed shares be given by s so that st = (s0t, s1t, . . . , sJt) where,

as before, s0t = 1−
∑J

j=1 sjt is the share of the outside good. Next, if have a probability/market share

model – see equation (5.7) – and if we know the values of the model parameters α,β (henceforth let

θ1 ≡
[
α β′

]′
), then we can always predict market shares based on equation (5.7). Let the model

predicted market shares be given by s̃ so that s̃t = (s̃0t, s̃1t, . . . , s̃Jt).
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Then we can use the guiding principle of finding values of θ1 so that st is as close as possible to

s̃t. Thus, we may be tempted to use methods of non-linear least squares (NLS) to find θ1 that

minimizes the distance between the observed and predicted market shares,

min
θ1

J∑
j=1

[sjt − s̃jt(α,β, ξ1t, ξ2t, . . . , ξJt)]2 (5.43)

in every market t, i.e., minimize the sum of squared residuals between the observed and the predicted

market shares. The problem with this method in general is that the econometric error terms ξt –

unobserved product qualities – enter the predicted market share and are not additively separable.

Hence, non-linear least squares methods will not give consistent estimates even if prices were not

endogenous.

Berry (1994) suggest using the GMM framework with a transformation that makes errors additively

separable. Assume that we have a set of M instruments given by matrix Z with dimensions JT ×M
(the jtth row is given by zjt = (z

(1)
jt , z

(2)
jt , . . . , z

(M)
jt )) which are uncorrelated with error terms in the

utility model ξjt. Then the M moment conditions are given by E(z′jtξjt) = 0. Note that even if

there was only one market, the the moment conditions hold, i.e., in that case the expectation is

over the J products within the single market. The key insight comes from the fact that the error

terms enter the mean utility linearly (δjt = α(−pjt)+xjtβ+ξjt), and that they only enter the mean

utility and hence one can separate out the ξjt terms to compute the moment conditions above. The

sample analog for the mth moment in market t is given by

1

J

∑
j

z
(m)
jt ξjt =

1

J

∑
j

z
(m)
jt (δjt − xjtβ + αpjt). (5.44)

Thus we want to estimate the parameters α,β that minimize the sample moment conditions (or

rather their weighted sum of squares). But since we cannot observe δjt we cannot proceed as is. To

this end, Berry (1994) suggests a two step approach. In the first step, we obtain an estimate of δjt,

– call it δ̂jt – and insert it into the moment conditions above, and in the next step, we search for

values of α,β that minimize the weighted sum of squares of these moment conditions.

(1) Figure out the values of δjt

(a) If we normalize δ0t = 0 and equate the observed shares to model predicted shares,

then we have J non-linear equations per market – see logit share equation (5.7) – in J

unknowns
s1t = s̃1t(δ1t, . . . , δJt)

s2t = s̃2t(δ1t, . . . , δJt)

...

sJt = s̃jt(δ1t, . . . , δJt).

(5.45)
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(b) If we can invert this system, we can solve for δ1t, δ2t, . . . , δjt as a function of observed

shares s1t, s2t, . . . , sjt.

(c) Thus, we now have δ̂jt ≡ s̃−1jt (s1t, s2t, . . . , sJt), J numbers per market which we can use

to carry out step 2 (in the simple logit case, δ̂jt = ln(sjt)− ln(s0t))

(2) With the estimated values of δjt, use GMM to estimate parameters (in this case, α and β)

so as to minimize (5.44).

(a) Recall that δj is the mean utility of product j defined linearly as δjt = α(−pjt)+xjtβ+ξjt

for all j,

δ1t = α(−p1t) + x1tβ + ξ1t

δ2t = α(−p2t) + x2tβ + ξ2t

...

δJt = α(−pJt) + xJtβ + ξJt.

(5.46)

(b) We can now use the estimated values of δ̂j to calculate the sample moments

1

J

∑
j

z
(m)
jt ξjt =

1

J

∑
j

z
(m)
jt (δ̂jt − xjtβ + αpjt) (5.47)

and minimize these to calculate the values of α,β.

In the case of the simple logit, we saw earlier that δjt has a closed analytical form and is simply

equal to ln sjt − ln s0t – log of the observed market shares minus the log of share of the outside

good – and hence we can straight away proceed to step 2, i.e., set the moment conditions to
1
J

∑
j z

(m)
jt (ln sjt − ln s0t − xjtβ + αpjt) to find θ1 =

[
α β′

]′
. This comes back to just estimating

the equation ln sjt − ln s0t = xjtβ − αpjt + ξjt via IV/2SLS/GMM techniques discussed earlier.

An analytical form is also available for some of the other cases (nested logit, for instance). More

generally however, as in the random coefficients model discussed next, this will not be so. I outline

the points of departure below.

In step (1a) above, we equated observed market shares to model predicted market shares. In

the case of logits, the model predicted market shares take the closed form (5.7) given by s̃jt =

exp(δjt)/
[
1 +

∑J
j=1 exp(δjt)

]
. In other cases, there will be no closed form available to compute

the model predicted market shares and we will need to resort to numerical simulation methods to

estimate the model predicted shares. Moreover, these will be functions of additional parameters

(call them θ2). Thus, equations (5.45) will be of the form

sjt = s̃jt(δ1t, . . . , δJt,θ2) (5.48)

Next, in steps (1b/1c), we ‘inverted’ these equations to solve for δ̂jt. In the case of logit, analytical

solution was available since δjt = ln sjt − ln s0t. More generally, these equations are nonlinear
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and need to be solved numerically. Berry/BLP suggest a contraction mapping (and prove that it

converges) for δt given by

δh+1
t = δht +

[
ln(st)− ln(s̃t(δ

h
t ;θ2))

]
, (5.49)

where st(·) is the observed market share, s̃t(·) is the model predicted market share at mean utility

δht at iteration h and ||δh+1
t − δht || is below some tolerance level.

Thus, in the random coefficients model that follows, we will again use Berry’s two step method (as

for the simple logit) with the exception that we will have to compute model predicted market shares

using simulation methods and that the inversion to obtain mean shares will be via the contraction

mapping above.

To sum up, Berry’s (1994) two step GMM approach with a matrix of instruments Z is as follows:

Step 1 Compute δ̂jt.

– Without loss of generality, subsume pjt within xjt as just another column (a special

attribute of product J), and rather than introduce new (unnecessary) notation, redefine

xjt =
[
−pjt xjt

]
. Similarly, redefine matrix X to be inclusive of the price vector so

that X =
[
p X

]
. Also, let st be the vector of observed shares and θ1 =

[
α β′

]′
.

– Conveniently, δ̂jt = ln(sjt)− ln(s0t) (in the case of simple logit) and δ̂ = ln(s)− ln(s0)

– Then ξjt(θ1) = δ̂jt(st)− xjtθ1 – and in matrix notation, ξ(θ1) = δ̂ −Xθ1.

Step 2 Define the moment conditions as E(Z′ξ(θ1)) = 0.

– Next, min
θ1
ξ(θ1)

′ZΦZ′ξ(θ1) where Φ = (E[Z′ξξ′Z])−1.

– In the case of logit, we have an analytical solution – see equation (5.37) in the GMM

section, and replace y in that equation with δ̂:

θ̂1 = (X′ZΦZ′X)−1X′ZΦZ′δ̂

– Since we don’t know Φ, we start with Φ = I or Φ = (Z′Z)−1, get an initial estimate

of θ1, use this to get residuals, and then recompute Φ = (E[Z′ξξ′Z])−1 to get the new

estimates of θ1.

6. Random Coefficients Logit/Heterogenous Tastes

We return now to the general set of utility for consumer n for product j in market t as in (5.1) but

without imposing the restriction that taste parameters {α,β} – the marginal utilities of product

characteristics – are the same for all consumers. Thus, let the utility be given by

unjt = αn(yn − pjt) + xjtβn + ξjt + εnjt, where

n = 1, . . . , N, j = 0 . . . , J, t = 1 . . . , T.
(6.1)
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Each consumer is assumed to have a fixed set of coefficients {αn,βn} but the person specific

coefficients are modeled as a function of underlying common parameters {Π and Σ} that are

multiplied to the person specific characteristics (dn,νn), each of which are random draws from an

underlying mean zero population with distribution functions Fd(d) and Fν(ν). Thus,[
αn
βn

]
=

[
α
β

]
︸︷︷︸
θ1

+ Πdn + Σνn︸ ︷︷ ︸
θ2={Π,Σ}

=

[
α
β

]
+

[
Πα

Πβ

]
dn +

[
Σα

Σβ

] [
νnα νnβ

] (6.2)

and where

dn ∼ Fd(d) νn ∼ Fν(ν). (6.3)

The person specific coefficients are equal to the mean value of the parameters θ1 =
[
α β′

]′
, plus

deviation from the mean due to a second set of parameters θ2 = {Π,Σ} and given by Πdn + Σνn.

To understand the dimensionality of these parameters, assume for concreteness that there are three

observed product characteristics (so k − 1 = 3) and five observed person specific characteristics

so that
[
α β′

]′
is a 4 × 1 vector (the additional dimension is for price) and dn is a 5 × 1 vector.

Additionally, νn is also a 4×1 vector – these are the person specific random error terms that provide

part of the deviation from the mean values of
[
α β′

]′
. Then Π is 4 × 5 matrix (20 parameters)

and Σ is a 4× 4 matrix (16 parameters) and so the total number of parameters affecting the utility

function are 4 + 20 + 16 = 40. Let πab and σef be the terms of Π and Σ respectively and let

(dn = (d1n, . . . , d5n)′) be the five demographics of the nth person recorded as deviation from the

population mean values. Then

αn = α +π11d1n + π12d2n + . . .+ π15d5n

+σ11v1n + σ12v2n + . . .+ σ14v4n

βkn = βk +πk1d1n + πk2d2n + . . .+ πk5d5n

+σk1v1n + σk2v2n + . . .+ σk4v4n,

(6.4)

and if dn are deviations from the mean and νn are mean zero error terms, then E(αn) = α and

E(βn) = β. In general, if there are D person specific observed characteristics (dn = (d1n, . . . , dDn)′)

and k − 1 product characteristics, then Π is a k ×D and Σ is a k × k matrix of parameters, i.e.,[
αn
βn

]
︸ ︷︷ ︸
k×1

=

[
α
β

]
︸︷︷︸
k×1

+ Πdn︸︷︷︸
k×D by D×1

+ Σνn︸︷︷︸
k×k by k×1

.
(6.5)
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If we insert (6.2) back into (6.1) and simplify, then the utility function can be decomposed into

three parts (or four, if we count αnyn term, but it drops out later on) and can be written as

unjt = αnyn + δjt + µnjt + εnjt

where,

δjt = δ(xjt, pjt, ξjt;θ1) = α(−pjt) + xjtβ + ξjt

µnjt = µ(xjt, pjt,dn,νn;θ2) = (−pjt,xjt)(Πdn + Σνn).

(6.6)

Note the similarity to the simple logit case: except for the µnjt term, which arises due to multipli-

cation of (Πdn + Σνn) with the observed product characteristics, the rest of the form is the same

as in the logit case. As before, αnyn will drop out of the model, δjt is the mean utility of product

j and is common to all consumers and µnjt + εnjt is the mean-zero heteroscedastic error term that

captures the deviation from the mean utility.

Recall that in the logit model the IIA property was arising due to the independence of the error

terms εnjt. The way around this problem is to allow these error terms to be correlated across different

brands – and in principle one can allow a completely unrestricted variance-covariance matrix for the

shocks εnjt. This however leads back to the dimensionality problem as one has to estimate a large

a large number of parameters (all pair-wise covariances between products and variances of each

of the J products). The nested logit took a restricted version of this by imposing some structure

on the error terms so that all products within a group have a correlation between them but not

with those in other groups. In the current context, we retain the iid extreme value distribution

assumption on εnjt, but the correlation among the choices is generated via the µnjt component of

the composite error term µnjt + εnjt. As can be seen above from (6.6), correlation between utility

of different products is a function of both product and consumer attributes so that products with

similar characteristics will have similar rankings and consumers with similar demographics will have

also have similar rankings of products (µnjt = (−pjt,xjt)(Πdn + Σνn)). The advantage here is that

rather than estimate a large number of parameters of a completely unrestricted variance-covariance

matrix for εnjt, we need to estimate relatively fewer parameters θ1 = (α, β)′,θ2 = {Π,Σ}.

In equation (6.6) the utility for product j for two different consumers differs only by µnjt + εnjt (the

δj term is the same for all consumers and αnyn is the same for all choices) and hence the fact that one

consumer choose product j while another chooses product i must only be because the two consumers

differ in their product specific idiosyncratic error terms µnjt + εnjt. Thus, as before, we can describe

each consumer as a tuple of demographic and product specific shocks (dn,νn, εn0t, εn1t, . . . , εnJt),

which implicity defines the set of individual attributes that choose product j given by

Ajt(xt,pt, δt(xt,pt;θ1);θ2) = {(dnt,νnt, εn0t, εn1t, . . . , εnJt) | unjt > unlt ∀ l = 0, 1, 2 . . . J, l 6= j}.
(6.7)

School of Economics University of East Anglia



Advanced Econometric Topics 47

Note that this set is defined via the parameters θ2 = {Π,Σ} since they were part of the µnjt term.

As before, the market share of product j is the integral of the joint distribution of (d, ν, ε) over

the mass of individuals in the region Ajt,

sjt =

∫
Ajt

dF (d, ν, ε)

=

∫
Ajt

dFd(d)dFν(ν)dFε(ε)

(6.8)

where the second part follows only if we assume that the three random variables for a given consumer

are independently distributed.

Unlike the logit case, the integral given above for the market share does not in general have a closed

analytic form and hence has to evaluated using numerical methods. If however, we continue to

assume that εnjt has iid extreme value distribution, then the probability that a given individual ñ

– with endowed values of d̃n and ν̃n, or equivalently with a given value of µ̃njt – chooses product j,

continues to have a closed logit form like equation 5.6 and in this case is given by

snjt =
exp(δjt + µ̃njt)∑J
j=0 exp(δjt + µ̃njt)

. (6.9)

Since µnjt = µ(xjt, pjt,dn,νn;θ2) integrating this individual probability over the distribution of dn

and νn will recover the market share of product j and hence equation (6.8) becomes

sjt =

∫
Ajt

snjtdFd(d)dFν(ν)

=

∫
Ajt

{ exp(δjt + µnjt)∑J
j=0 exp(δjt + µnjt)

}
dFd(d)dFν(ν).

(6.10)

In this case, the price elasticities of market shares are given by

ηjkt =
∂sjt
∂pkt

pkt
sjt

=

−
pjt
sjt

∫
Ajt
αnsnjt(1− snjt)dFd(d)dFν(ν) if j = k,

pkt
sjt

∫
Ajt
αnsnjtsnktdFd(d)dFν(ν) otherwise.

(6.11)

The main advantages of this model are that estimation requires estimation of a handful of parameters

(rather than square of the number of parameters), elasticities do not exhibit the problems noted

earlier for the logit (own or cross-elasticities) and allows us to model consumer heterogeneity rather

than rely on a representative consumer. Nonetheless, nothing comes for free as this model is clearly

harder to estimate and requires some prior knowledge of the distributions of dn and νn and we need

to evaluate the integral numerically.
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Integration. To compute the integral in (6.10), we need to know the distribution functions Fd(d)

and Fν(ν). Unless these two distributions take some explicitly convenient form, so that the whole

expression reduces to a closed form analytical formula, integration will need to be done numerically.

Since dn is the vector of demographics for consumer n (income, family size, age, gender, etc.),

one way to proceed is to make use other of data sources, such as the census data, to construct a

non-parametric distribution. We can then take random draws from this distribution to compute the

integral above. In practice one can directly draw N number of consumers – where N is a reasonably

large number – from each of the t markets and record their demographic information. Thus, let us

assume that dn is a 5 × 1 vector of demographics, and that we have obtained Ns random draws

from each market and recorded the values of these demographics. Next, recall that if xjt is a vector

of three observed characteristics (k − 1 = 3) for product j, then for each person, νn is a 4 × 1 (or

more generally k × 1) vector of random error terms that provide part of the deviation from the

mean values of
[
α β′

]′
. To this end, most researchers often specify Fν(ν) as standard multivariate

normal and take N draws per market to obtain νn. Let us again assume that with the help of

a good random number generater, we have taken Ns such draws per market and have recorded a

series of 4× 1 vectors for each person.

The key to understanding numeric integration by simulation is as follows. Think of any arbitrary

random variable x (nothing to do with characteristic vector xjt above) with a probability distribution

f(x) = dF (x)/dx → dF (x) = f(x)dx. If we compute the integral
∫
x · f(x)dx, this is just the

expected value of x, i.e., E[x] =
∫
x · dF (x), and the sample analog would be the weighted average

of x given by x̄ =
∑

n xnPr(xn). If all values are equally possible, then it is just the simple

average x̄ = (1/N)
∑

n xn. The idea carries over to any function g(x) defined over x such that

E[g(x)] =
∫
g(x) · dF (x), and the sample analog would be g(x) =

∑
n g(xn)Pr(xn). Thus, if we

wanted to numerically evaluate the integral of g(x) with a known distribution of x (i.e., evaluate∫
g(x) · dF (x)), all we need to do is take lots of draws of x from this known distribution, evaluate

g(x) at each of these points and then just take a simple average of all these values of g(x). We

will get a pretty good value of the integral by this method if we have taken enough good draws of

the random variable x. Consider the case where x is distributed between 0 and 3 such that the

probabilities of draws are Pr(0 ≤ x < 1) = .45, Pr(1 ≤ x < 2) = .1, and Pr(2 ≤ x < 3) = .45.

If we drew 100 random numbers from this distribution, we would expect about 45 of them to be

between 0 and 1, another 10 observations between 1 and 2, and 45 observations between 2 and 3.

If that were the case, we could safely evaluate g(x) at each of these 100 random draws and take

their average to compute E[g(x)] =
∫
g(x) · dF (x). If on the other hand we find that the drawing

sequence (algorithm) is such that for the first 100 draws, we have 1/3 of observations from each

of the three regions, then with just 100 draws, average values of g(x) will obviously give a very

poor (if not outright wrong) approximation to the integral in question. (There is a large literature
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on drawing from different types of random distributions, for a good review of basic techniques see

chapter 9 in Train).

Thus given the values of the parameters θ2 = {Π,Σ}, a value of mean utility δjt and Ns random

values of dn and νn, the predicted market share of good j can be computed using the smooth

simulator as the average value of snjt over the Ns observations,

s̃jt =

∫
Ajt

snjtdFd(d)dFν(ν)

=
1

Ns

Ns∑
n

snjt =
1

Ns

Ns∑
n

{ exp(δjt + µnjt)∑J
j=0 exp(δjt + µnjt)

}
where µnjt = (−pjt,xjt)(Πdn + Σνn).

(6.12)

Distributions of νn and Parameters θ2. The number of parameters to estimate is still some-

what large – in the simple case of five demographics and 3+1 product characteristics, we saw that

the total number of parameters is 40 – and data may not allow very precise measurement of all these

parameters. In BLP, they do not use individual demographics to create variation in person specific

coefficients. Equivalently, the k × d matrix Π consists of zeros and the variation in
[
αn β′n

]′
is

only due to Σνn. By contrast, Nevo sets only some of the terms of Π to zero and estimates the

other coefficients. More often however, researchers set Σ as a diagonal matrix and estimate only

the leading terms of this matrix. This is not as restrictive as it may appear at first pass.

To understand the logic of choosing parameters that are set to zero, and the implications, let us

consider a very simple example (only to keep the algebra manageable) where there is only one

observed characteristic of each product, plus price, so that
[
αn β′n

]′
is just a 2× 1 column vector

instead of k× 1 (just to be clear, in what follows in the next couple of paragraphs, think of βn and

β as just 1× 1 scalars even though I will continue to write them in bold font for vectors). Further,

to understand the implications/logic of setting the off-diagonals of Σ to zero, let’s further simplify

and suppose that all the elements of Π are zero (again, only to simplify the algebra as the main

idea carries through with or without Π in the utility function).

Thus sans the Πdn term, let[
αn
βn

]
=

[
α
β

]
+ Σνn =

[
α
β

]
+

[
σ11 σ12
σ21 σ22

] [
ν1n
ν2n

]
, (6.13)
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and compute the expected value and variance of αn and βn. Since νn is a mean zero error term,

then
αn = α + σ11ν1n + σ12ν2n

βn = β + σ21ν1n + σ22ν2n

E[αn] = α

E[βn] = β

Var[αn] = σ2
11Var[ν1n] + 2σ11σ12Cov[ν1n, ν2n] + σ2

12Var[ν2n]

Var[βn] = σ2
21Var[ν1n] + 2σ21σ22Cov[ν1n, ν2n] + σ2

22Var[ν2n].

(6.14)

The implications of setting the off-diagonal terms in Σ to zero are now obvious: if σ12 = σ21 =

0, then αn is a deviation from the mean value of α and the deviation is determined only by a

random shock ν1n multiplied by a coefficient σ11, but the shock to the marginal utility of the second

characteristic ν2n, does not affect the deviation from mean for the first characteristics, i.e., the

marginal (dis)utility of price. Put another way, the unobserved heterogeneity has been modeled

such that if price and speed of a computer are the only two characteristics in consideration, and a

given person gets a positive shock to the marginal utility of speed (i.e., they get more utility from

the speed of computer relative to another person), then it does not imply that they also get a higher

(dis)utility from the price of the computer due to the higher utility from speed. The (dis)utility

from price is equal to α plus a person specific deviation only for price σ11ν1n. Similarly, marginal

utility from speed βn is a deviation from β and only depends on σ22ν2n but not on ν1n.

Similarly, variances of αn and βn depend on the variances of the shocks for these characteristics

(e.g. Var[αn] = σ2
11Var[ν1n]) but not on the covariance of the shocks, even if Cov[ν1n, ν2n] 6= 0,

since σ12 = σ21 = 0. Carrying on with this simple case where βn is a scaler, let’s also compute

the covariance between αn and βn. Covariance between the two random variables is defined as

Cov(αn,βn) = E [{αn − E(αn)}{βn − E(βn)}], and hence,

Cov(αn,βn) = E(αnβn)− αβ

= σ11σ21Var(ν1n) + σ12σ22Var(ν2n)

+ σ11σ22Cov(ν1n, ν2n) + σ12σ21Cov(ν1n, ν2n)

= σ11σ22Cov(ν1n, ν2n).

(6.15)

In the equation above, the first line is due to the definition of a covariance and the observation that

E[αn] = α and E[βn] = β, and the second line follows from substituting values of αn and βn from

equation (6.14), taking the expectations, setting E[νn] = 0 and simplifying. The last line is if we set

σ12 = σ21 = 0 and shows that even after setting the off-diagonals in Σ equal to zero, the covariance

between the marginal utilities is not necessarily zero – unless we now further assume that the mean

zero error terms νn are not correlated across the characteristics.
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As it turns out, it is also common to assume that νn are drawn from multivariate standard normal

or log normal, i.e., covariances between the error terms are zero as well. In the special case where

the terms of Π are also zero – as in the foregoing discussion – this implies that covariances between

marginal utilities will also be zero. However, if terms of Π are not all zero, they will still invoke

correlations between the marginal utilities of different characteristics as equation (6.4), reproduced

below for this special case of two characteristics and five demographics, shows

αn = α +π11d1n + π12d2n + . . .+ π15d5n

+σ11ν1n + σ12ν2n

βn = β +π21d1n + π22d2n + . . .+ π25d5n

+σ21ν1n + σ22ν2n.

(6.4)

In this case, the covariance between αn and βn will be invoked via the π terms and the covariances

between the demographic variables, even if we set σ12 = σ21 = 0 and choose the distribution of νn to

be multivariate standard normal. Thus as mentioned earlier, if we use demographic data and don’t

set the Π to zero (at least not all terms) then setting the off diagonals of Σ to zero and drawing

νn from multivariate standard normal is not so restrictive.

6.1. Estimation Details

We finally turn to the estimation of the random coefficients model. The essential idea of estimation

remains the same as that of two-step estimation outlined in section 5.5. I recommend re-reading the

summary of the Berry’s two step method outlined for the case of logits and the points of departure

for more general cases before starting this section. Briefly, estimate mean utility δjt and then use it

in the second step to estimate the moment functions and find parameters that minimize the value.

This of course requires first estimating model predicted market shares via (6.10), equating them to

observed market shares, and then inverting the relation and using a contraction mapping to compute

δjt. We consider each of these along the way and following Nevo (2001), combine everything in a

5-step algorithm.

(-1) For each market t, draw Ns random values for (νn,dn) from the distributions Fν(ν) and

Fd(d). The distribution Fd(d) can be estimated using census data. For Fν(ν) we can use

zero mean multivariate normal with a pre-specified covariance matrix.

(0) Select arbitrary initial values of δjt and θ2 = {Π,Σ}. For θ1 =
[
α β′

]′
use values from

simple logit estimation.

(1) Use random draws and the initial parameter values to estimate model predicted market

shares s̃jt of each product in each market (use (6.12)).

(2) Obtain δ̂jt.
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(a) Keep θ2 = {Π,Σ} fixed and change values of δjt until predicted shares s̃jt in step above,

equal the observed shares. This is the inversion step where we want to find δt such that

sjt = s̃jt(δ1t, . . . , δJt,θ2) in each market.

(b) This can be done using the contraction mapping δh+1
t = δht + [ln(st)− ln(s̃t)].

(c) Note carefully that mean utility is a function of observed market shares and parameters

θ2. Thus, δjt = δjt(st,θ2).

(3) Define error term as ξjt = δ̂jt(st,θ2) + αpjt − xjtβ and calculate the value of the moment

condition, i.e., the GMM objective function.

(a) As before, subsume pjt within xjt as just another column of xjt and redefine xjt =[
−pjt xjt

]
. Similarly, redefine matrix X to be inclusive of the price vector so that

X =
[
−p X

]
.

(b) Thus ξjt(θ1,θ2) = δ̂jt(st,θ2)− xjtθ1.

In matrix notation ξ = δ̂(s,θ2)−Xθ1.

(c) Then the objective function to be minimized is(
ξ(θ1,θ2)

′Z
)
Φ
(
Z′ξ(θ1,θ2)

)
,

where Φ is the GMM weighting matrix.

(d) Initially set the weighting matrix as Φ = (Z′Z)−1.

(4) Search for better values of θ1 =
[
α β′

]′
and θ2 = {Π,Σ} and the GMM weighting matrix

Φ as follows:

(a) Before you start searching for the parameter values that minimize the objective func-

tion, note that while ξ(θ1,θ2) is a function of both sets of parameters θ1 and θ2, it

actually partitions into two components: ξjt(θ1,θ2) = δ̂jt(st,θ2) − xjtθ1. This is im-

portant because we can help the search algorithm by solving for θ1, conditional on

θ2 analytically. How? In the GMM objective function given above [(ξ′Z)Φ(Z′ξ)], set

ξ = δ̂(θ2) − Xθ1 (I have suppressed the dependence on observed shares to keep it

simple). Now consider the first order condition with respect to θ1 and solve for θ1.

See equations 5.31 and 5.32 for FOC and its solution for the GMM estimator. This

implies that if we have some fixed values of θ2, then θ1 can be solved for analytically

as θ1 = (X′ZΦZ′X)−1X′ZΦZ′δ̂(θ2).

(b) Thus, first solve (search) for θ1 as θ̂1 = (X′ZΦZ′X)−1X′ZΦZ′δ̂(θ2).

(c) Use new θ1 =
[
α β′

]′
to re-compute error term ξ (see 3b above).

(d) Next, update the weighting matrix Φ as Φ = (Z′ξξ′Z)−1.

(e) Take the new value of Φ and update the GMM objective function, (ξ′Z)Φ(Z′ξ).

(f) Finally, update θ2 = {Π,Σ} – do a non-linear search over {Π,Σ} to minimize the

objective function.
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(5) Return to step (1) above with all new shiny parameter values (keep the original draws) and

iterate. Note that you can skip the updating of the weighting matrix Φ in step 4e from now

on.

Some Further Details.

• Brand Dummies. In the section on logits, we discussed adding in the brand dummies to

the vector xjt and recovering the β coefficients for the brand characteristics. Same can be

done here as well, but will need to have two separate versions of data matrix X (call them

X1 and X2). Observe that X (defined to be inclusive of the price vector) enters the utility

function twice: in the linear part of the estimation as mean utility δ(X;θ1) = Xθ1 + ξ –

this is from δjt = δ(xjt, pjt, ξjt;θ1) = α(−pjt) + xjtβ+ ξjt – and in the non-linear part of the

estimation as individual deviation from the mean utility µn(X;θ2,dn,νn) = X(Πdn+Σνn)

– this follows from µnjt = (−pjt,xjt)(Πdn + Σνn) – and allows for random coefficients on

product characteristics. In practice we may not want to allow random coefficients on all

characteristics, in which case the data matrix X appearing in µn can be a subset of the one

appearing the linear part δ. Thus, we can write the two components as δ(X1;θ1) = X1θ1+ξ

and µn(X2;θ2,dn,νn) = X2(Πdn + Σνn).

In general then, X1 includes all variables that are common to all individuals (price, pro-

motional activities, and brand characteristics or brand dummies instead of brand charac-

teristics), while X2 contains variables that can have random coefficients (price and product

characteristics but not brand dummies). Finally, note that if we use X1 and X2, then the

estimator θ̂1 in step 4a/4b above will be θ̂1 = (X′1ZΦZ′X1)
−1X′1ZΦZ′δ̂(θ2).

• Additional Instruments. The instruments matrix Z consists of all exogenous variables.

If the brand characteristics (excluding price) are exogenous, then the brand characteristics

plus the instrument(s) for the price variable consist of the matrix Z, or alternatively, if we

use brand dummies, then the brand dummies and the price instrument(s) form the matrix Z.

However, note that if we have only one additional instrument for price, it will not be enough

for identification of the model parameters. The brand characteristics (or brand dummies)

plus the one additional instrument for price will give exactly as many moment conditions

as the number of components of the parameter vector θ1. These would be enough in the

linear logit case. However, in the random coefficients case, we have to estimate additional

k × D + k × k parameters of θ2 = {Π,Σ}. This is not possible unless we have additional

k × D + k × k moment conditions. In practice, researchers often set some of the terms of

the Π matrix to zero (based on prior beliefs about the random coefficients for some of the

product characteristics being due to differences in individual demographics) and also set

the parameter matrix Σ to be diagonal (see earlier discussions). This reduces the need for
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additional moment conditions from kD + k2 to g + k where g is the number of non-zero

terms in Π. These may be relatively easier to overcome (these instruments should also

not be nearly collinear else will give rise to redundant moment conditions). For instance,

if one is using BLP style instruments for price (and product characteristics are exogenous)

then recall that, in general, one gets more than one instrument for price by using sums

of the values of characteristics of other products offered by a firm, and the sums of the

values of the same characteristics of products offered by other firms. Alternatively, if using

Hausman style instruments, the price of the product from more than one market needs

to be used (for instance, Nevo (2001) uses data from 20 quarters and multiple cities and

constructs 20 additional instruments from other cities matching one from each quarter). An

additional set of instruments could be the average value (average over n individuals) of the

product characteristics interacted with the person specific demographics to account for the

parameters in the Π matrix and similarly the average value of the person specific shocks ν

interacted with product characteristics.

7. Summary

These lecture notes are meant to be an aid in understanding basic estimation issues. They are by no

means complete in the sense of covering all the important variants of the models discussed above.

For instance, some useful and important variations to the random coefficients model discussed

above include using individual level data (in addition to the aggregate data), adding in the cost side

moment restrictions to the model (e.g. equation (3.15) p = c+Ω−1q(p, z; ξ)) and modeling dynamic

demand. Nonetheless, these lecture notes should serve as a useful starting point in understanding

these variants. Finally, note that while canned routines in almost any software (SAS, STATA, etc.)

can be used for the linear models (multi-budgeting with AIDs, logit, nested logit etc.) no canned

routine (yet) exists for random coefficients models with aggregate data. Thus, while the step-by-

step algorithm outlined in the previous section should help in coding for your own research project,

some nearly canned routines in MATLAB, R, GAUSS etc. have been helpfully provided by several

researchers (Aviv Nevo, K. Sudhir, and Matthijs Wildenbeest to name a few) and can serve as a

good starting point for coding your own work.

Farasat A.S. Bokhari

School of Economics & Centre for Competition Policy

University of East Anglia
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