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DEMAND ESTIMATION

LECTURE OUTLINE

o Topics: Approximate outline of the main topics

o Preliminaries ............ ... ... ittt

(1) Why demand estimation?

(2) Typical problems in estimation

(3) Endogeneity

(4) Product vs. characteristics space (discrete choice)

e Estimation in Product Space (AIDS only) ............

(1) Almost Ideal Demand System (AIDS model)
(2) Endogeneity and instruments

(3) Multistage budgeting

(4) AIDS w./ multistage budgeting example

(5) AIDS estimation example (SAS/STATA)

e Discrete Choice Models ............................

(1) Random Utility Model

(2) Logit and estimation details

(3) Logit estimation example (SAS/STATA)

(4) Nested Logit

(5) NL etimation example (STATA w/ mergesim)
(6) GMM review

(7) Random Coefficients Logit

@ AppendiX ...

@ Aggregation an separability
@ Merger simulations

EX M Loughborough
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.................. (slide 5)

................. (slide 29)

................. (slide 82)

................ (slide 168)

2/215



READINGS %_ Loughborough

MAIN SOURCES 7 University

@ Readings: There is no single text for this workshop. These lecture notes draw heavily
from several sources. The primary ones are listed below.

e Berry, S. T. (1994). Estimating discrete-choice models of product differentiation.
RAND Journal of Economics, 25(2):242-262.

e Berry, S., Levinsohn, J., and Pakes, A. (1995). Automobile prices in market
equilibrium.
Econometrica, 63(4):841-890.

e Nevo, A. (2001). Measuring market power in the ready-to-eat cereal industry.
Econometrica, 69(2):307-342.

e Nevo, A. (2000b). A practitioner’s guide to estimation of random-coefficients logit
models of demand.
Journal of Economics and Management Strategy, 9(4):513-548.
Other useful material to consult includes Ackerberg et al. (2007), Cameron and Trivedi
(2005) (Chapter 6), Train (2003) (Chapters 3 & 9), Hausman et al. (1994), and Reiss and
Wolak (2007). And most recently, Conlon and Gortmaker (2020).
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READINGS %_ Loughborough

ACKNOWLEDGEMENTS 7 University

These lecture notes are based on several sources and draw heavily from the following articles/chapters:
Cameron and Trivedi (2005, Chap. 6); Deaton and Muellbauer (1980b, Chap. 3 & 5); Hausman et al.
(1994); Bokhari and Fournier (2013); Bokhari and Mariuzzo (2018); Berry (1994); Berry et al. (1995);
Ackerberg et al. (2007); Nevo (2000b, 2001).

In addition to these primary sources, I have also benefitted from presentations/lecture notes on the same
topics by other researchers who have generously put their slides on the internet. These sources include (1)
Matthew Shum (Lecture notes: Demand in differentiated-product markets); (2) Matthijs Wildenbeest
(Structural Econometric Modeling in Industrial Organization); (3) Eric Rasmusen (The BLP Method of
Demand Curve Estimation in Industrial Organization); (4) John Asker and Allan Collard-Wexler (Demand
Systems for Empirical Work in I0); (5) Jonathan Levin (Differentiated Products Demand Systems); (6)
Ariel Pakes (NBERMetrics); and (7) Aviv Nevo (NBER Methods Lecture — Estimation of Static Discrete
Choice Models Using Market Level Data).

Finally, T am also in debt to my colleague Franco Mariuzzo for providing significant feedback on these
notes. All errors are mine.
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PRELIMINARIES .*+ Loughborough

WHY DEMAND ESTIMATION?  University

@ Demand systems often form the bedrock upon which empirical work in industrial
organization rests

@ A fundamental issue is to measure market power, which is measured by the price-cost
margin
L= p—me (L = Lerner Index) (D)
p
@ Lerner Index is a measure of a firm’s market power (the index ranges from a high of 1 to a
low of 0, where for a perfectly competitive firm with p = mec, the value of the Lerner
index is zero)

@ But cost is often not observed — the “new empirical industrial organization” (NEIO)
literature is motivated by this data problem

@ General idea — measure the demand side and back out the price cost margins

@ How?
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SINGLE PRODUCT MONOPOLIST 7 University

WHY DEMAND ESTIMATION? *‘% Loughborough

@ Consider the monopolist’s maximization problem

max pq(p) — c(¢(p)) @
FOC imply
dq(p) _ 9cla(p)) da(p) _ Jq(p)
q(p) +p a — 04 op — mC(q(p))Tp 3
At the optimal price

or equivalently

P - mc*(q(p ) _ 1* )
p n(p*)
where n(p*) = ﬁ 6%(;’) _ is the price elasticity of demand
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WHY DEMAND ESTIMATION? *‘=. Loughborough

SINGLE PRODUCT MONOPOLIST 7 University

@ Inferring costs:

p* ~ ()
@ If the monopolist is pricing optimally, then estimate/knowledge of elasticity 7 allows us to
infer marginal cost mc

1 = P —mela(p?)) 1

@ Similarly, if there was a cost shock, and if we have inferred the marginal cost mc, then we
can figure out its impact on price (assuming the firm still behaves optimally) from the
Lerner condition

(p)

1
Pt ) op) !

@ Price is equal to marginal cost plus a markup

@ The markup depends on the curvature of the demand curve (if demand is perfectly elastic,
as in the case of the perfect competition, then p = mc)

@ Thus, if we can estimate demand elasticity, we can back out the markups

@ The idea extends to oligopoly as well
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PRELIMINARIES ;%_ Loughborough

ESTIMATION ISSUES AND APPROACHES TO DEMAND EsTIMATION W University

@ Topology of Various Approaches

e single vs multi-products
e product or characteristics space
e representative vs heterogeneous agents

@ Common Problems

endogeneity

multicollinearity

the dimensionality problem

unobserved heterogeneity among consumers

@ Depending on the context and the question, a researcher needs to be careful about
choosing the appropriate estimation methodology, as there are tradeoffs between how well
different methods deal with these issues and how relevant any given problem is within a
context
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PRELIMINARIES *‘=.

SINGLE VS. MULTIPRODUCT SYSTEMS

@ When there are differentiated products, we want to estimate the system of demand

equations and infer the markups using the full cross-elasticity matrix

@ = q(p1,p2,---Pj,--->PJ, X15€1,01)
q2 = q2(p1,p2, - - Pj -+ DI, X2;2,02)

4; = q;(p1,p2,---Djs- -, 05, X3;§5,0;)

where j =1,...,7,...,J represent the J different related products and 6; are the

paraments in the j-th demand function g;(+) that need to be estimated

@ Elasticity matrix is represented by

N1 M2 15
m21 T2 n2; 9g; ()
= where =
n Mji i
nJj1 N2 nJJ

@ Example ...

Loughborough
» University
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SINGLE VS. MULTIPRODUCT SYSTEMS

PRELIMINARIES *‘=. Loughborough

@ Example ...

» University

@ Say there are just three related products ... J = 3 and demand is specified in log-log form

(aka Cobb-Douglas)

Ingi = aio + Prilnpr + Bizlnps + Bislnps + y14a X1 +m
Ing2 = azo + Pa1lnpr + Bazlnps + Baslnps + y24 X2 + 2
Ings = aso + Bailnp: + Bza2lnpz + Baslnps + 34 X3 + 13

then the elasticity matrix is constructed from the S parameters

B Bz Pis
n=|Ba B2z Pos where Nji = gj () p() - 812%-
Ba1 Ba2  PBss e m

= Bji

@ Note that with just three products, the elasticity matrix in the example above requires

estimating at least nine parameters from the demand system above
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PRELIMINARIES .*+ Loughborough

SINGLE VS. MULTIPRODUCT SYSTEMS 7 University

@ Should we be measuring demand for aggregate product type (drugs) or individual brands?
Prices move together

@ Most products have substitutes or complements and it is often necessary to explicitly
account for the substitution possibilities to adequately answer the research question at
hand

@ In the context of multi-products, the researcher also has to face the problem of
dimensionality and multicollinearity

o Consider a system of demand equations

a=D(p,z6,§) (©)

where q is a J X 1 vector of quantities, p is a vector of prices, z is a vector of
exogenous variables that shift demand, 6 are the parameters to be estimated, and &
are the error terms

e In a system with J products, even with some simple and restrictive forms, the
number of parameters to estimate is large

e If D(-) is linear so that D(p) = Ap where A isa J x J matrix of slope
coefficients, then there are J> parameters to estimate (plus additional ones due to the
exogenous variables z)

o Restrictions ...
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PRELIMINARIES ;%_ Loughborough

SINGLE VS. MULTIPRODUCT SYSTEMS 7 University

@ Imposing the symmetry of the Slutsky matrix or adding up restrictions (Engle
and Cournout aggregation) reduces the number of parameters to be estimated

@ However, the essential problem, that the number of parameters increases in the
square of the number of products, remains

. . 9q; _ Ohy _8q~
o Slutsky equation: ap]i = BTZ — quy]
o Engle aggregation: . s;n;y =1
o Cournot aggregation: Zj s;jmji = —8;) where 1;;

@ g; and h; are the Marshallian and Hicksian demand functions respectively for product j,
and y is the income or total expenditure

@ 1);; is the cross price elasticity of product j with respect to price of %, 7;,, is the income
elasticity of product j and s;, s; are the expenditure shares
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PRELIMINARIES .*+ Loughborough

SINGLE VS. MULTIPRODUCT SYSTEMS 7 University

o [f the research question allows, avoid the problem of estimating too many
parameters by working with a more restrictive form
o Consider the constant elasticity of substitution (CES) utility function

J
/
U(q;p)ZU(ql,qw-qu?p):(qu)lp 7

where p is the parameter of interest that measures the elasticity of substitution
@ The demand for a representative consumer is then given by
pl_/ (1-p)
S pf/ (1-p)
@ Need to estimate only one parameter ... not J2 — problem solved!

@ But now the cross elasticity between products ¢ and j is the same as between k
and j for all combinations of 4, j, k,

94i p; _ Oak pj
Op; i Opj q

Vi, j, k. )
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SINGLE VS. MULTIPRODUCT SYSTEMS 7 University

PRELIMINARIES .*+ Loughborough

@ An alternative to the single parameter of the CES utility function is the logit
demand (Anderson, de Palma, and Thisse, 1992)

J J
u(a; ) =Y 6;q;— > gjlng;. (10)
J J

@ Elasticities in this model depend on market shares (given by J number of
parameters ¢;) but not on the similarities among the products

@ What if products j and k£ are more alike (coke,pepsi) and product 7 is somewhat
more different (fanta)?

o Will discuss logit properties further (later)
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ENDOGENEITY AND IDENTIFICATION 7 University

DEMAND MODELS ,*‘:, Loughborough

@ Demand models often suffer from the endogeneity problem

e Endogeneity means when in an econometric equation, a right-hand side is correlated
with the error term

e In demand models, this is because the prices on the right-hand side are typically
correlated with the error term

e A consequence of that is that it violates one of the classical assumptions of the OLS
regression theory and hence leads to biased estimates of the demand parameters

@ The Problem — Consider an equation such as
Y = B1+ B2 Xoi + ui

where the interest is in knowing the value of (2.

o If (E[X2;,u;] # 0) then simple regression based methods will produce biased
estimates such that E(832) # (2 .
o This is because F[X2;, u;] # 0 (crucial assumption in OLS) due to

@ measurement error of Xo
@ omitted variable(s) X3 correlated with both Y and Xo
o simultaneity —i.e., where X2 and Y are jointly determined
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DEMAND MODELS *‘% Loughborough

ENDOGENEITY AND IDENTIFICATION 7 University

Regression of Q on P Supply curve shifters identify demand curve
Q Q | (neithera demand curve nora supply curve) al Q= f(Pz=21)
Q=f(P2) Qs =f(PZ=z2)
o x Q*=f(PZ=23)
®
°
Q¢=f(PX) Qd=f(PX)
P P P

@ In typical demand analysis with n products

o Quantity demanded is a function of own price, price of related products and other
demand shifters, Q¢ = f(p1,p2,...,Dis -+ Pn, Xi)-

e The supply curve @5 is also a function of its own price and marginal cost
Qi = f(pi, Ci).

o The observed price and quantity (or shares) are jointly determined via market
clearing (demand equals supply, Q¢ = Q3).

e Regression of quantity on prices (even after holding other variables constant) will
result in neither the estimates of the demand curve nor of the supply curve.

e Demand curve can be identified via variables that shift the supply curve (e.g. cost of
production).
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DEMAND MODELS *‘%. Loughborough

ENDOGENEITY AND IDENTIFICATION 7 University

N Regression of Q on P Supply curve shifters identify demand curve
Q Q | (neitherademand curve nora supply curve) a ? Q= f(Pz=21)
Q*=f(PZ) Q3= f(PZ=22)
o x Q= f(PZ=23)
.
o
Qd=f(PX) Qd=f(PX)
P P P

@ The Cure — For each endogenous variable such as Xo, find a variable (instrument) Z such
that

o itisrelevant (i.e., E[X2;, Z;] # 0)
o itisvalid (i.e., E[Y;, Z;] = 0)

@ The IV procedure — In two easy steps

o Regress X2; on Z; and obtain predicted values of X (say )?2)
e Regress Y on X5 — coefficient on X5 is now an unbiased estimate of 32
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DEMAND MODELS *‘%. Loughborough

ENDOGENEITY AND IDENTIFICATION 7 University

Regression of Q on P Supply curve shifters identify demand curve
Q Q | (neitherademand curve nora supply curve) al Q= f(Pz=z1)
= f(p2) @ =f(pz=22)
o x Q*=f(PZ=23)
o
°
Qd=f(PX) ° Qé=f(PX)
P P 3

@ Instruments

o To estimate demand curves, we need at least n relevant and valid instruments
(Z1,Z2,...,Zy).

e C; enter the supply function and hence are relevant (i.e., E[p;, Ci] # 0).

e C; do not enter the demand function and hence are valid (i.e., E[Q;, C;] = 0).

e Good News: Can use the (marginal) costs C; of the products as instruments for the
prices.

e Bad News: Data on marginal costs by product line is often not available.

@ Need some different types of instruments to estimate demand curves.
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ENDOGENEITY  University

PRELIMINARIES ;%_ Loughborough

@ Prices are often endogenous ...

@ Consider a simple linear demand/supply model for a single homogenous product
over T markets, where aggregate demand/supply relations are given by
@ = Bio + vi2pe + Buizie + Eue,
Pt = P20 +Y224; + Ba2war + Eat, (11
a4 =qf
@ error terms are such that*

E(&itlxt) = 0, E(&at|xt) = 0,
E(ﬁ%ﬁxt) = 0%,E(§§t|xt) = U%
E(&14x¢) = 0, E(&arx¢) = 0,
and E(&1¢&at[x¢) = 0

12)

where x; = [1 z1; x9¢]
*Since we have already made the stronger assumption that F(£1¢|x¢) = 0, technically we do not need
to explicitly assume that F(£1¢x¢) = 0, since the latter is implied by the former assumption of zero
conditional mean due to the law of iterated expectations. Nonetheless, I include it just to be clear.
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PRELIMINARIES ;%_ Loughborough

ENDOGENEITY  University

@ Prices are often endogenous ...

@ solve for the reduced form equilibrium values of ¢* and p* — dropping subscript
t, we get

%« _ P1o 20712 11 Y1222 17T 71262
Bio + B B B &+ 7126
qg = x1+ T2 +
1 —v12722 1 —v12722 1 — y12722 1 — y127922
20 + P10722 11722 22 2281 + &2
p*zﬁ Py, Puyen o B b HE
1 — 12722 1 — 712722 1 — 712722 1 — 712722

13)

@ p* is a function of &; (and &) and hence an OLS estimation of the demand
equation above (regress g on p, x1) will result in an inconsistent estimate of ;2
and other parameters
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PRELIMINARIES ;%_ Loughborough

ENDOGENEITY  University

@ Prices are often endogenous ...
@ Useful to explicitly compute the conditional covariance between p and &1
@ Note that conditional on x;,
p— E(p") = ’1Yzz§1 + &2
— V12722 (14)
and & — E(&) =&
Thus

V2 2 E(&1€2)

1 (15)
1 — v127y22 1 — v127y22

cov (p ) 51 ) =
@ Even if the error terms across the two equations were uncorrelated (E(£1:£2¢|x¢ = 0), the
covariance between p and £; would still not be zero

@ On the other hand, if 22 is zero, ¢ does not appear in the supply equation, i.e., it is a
triangular system of equations and OLS estimation is fine as long as E(£1:€2¢|x¢) = 0

@ For completeness — complete system of equations, i.e., the number of equations are equal
to the number of endogenous variables — we also require that y12 # 1/722.
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ENDOGENEITY  University

PRELIMINARIES .*+ Loughborough

@ we can re-write the system in (11) in matrix notation

yi=lae p]xe=[1 w1 x20] & = [ &)

_ B0 Pao 16
r= [ 1 722} and, B= |11 O (16)
e 0 fa

then, the system of equations above can be written as
yiT —xB = ¢ (17
so that the reduced form equation is
y, =xI1+v, whereII =BT 'and, v, =¢&T! (18)

Note that in the equation above we are taking the inverse of the I' — but the
inverse exists if the determinant (det(T') = 1 — 7127722) is not zero, which goes
back to the condition 12 # 1/722 mentioned above
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PRELIMINARIES .*+ Loughborough

ENDOGENEITY  University

@ The moment restrictions in (12) (in general we do not need to impose
E(&1t€2t]x:) = 0) are

E(&:[x:) = 0, E(&&|x) =X
E(v¢[x:) = 0, E(vivy|x;) = Q (19)
where Q = (T7!)’E=r1.

@ Estimation can proceed with IV/2SLS (or 3SLS for joint estimation), where the
demand equation is estimated using xo; as the instrument, and supply equation is
estimated using x4 as the instrument

o If either S22 = 0 or if data on z9; is not available, demand equation cannot be
identified/estimated consistently (vice versa for supply equation)
@ Since the z’s are exogenous variables, they can serve as instruments

e xo; are cost shifters — they affect production costs; Correlated with p; but not with
&1+, hence use as instruments in demand function

e x1+ are demand shifters — affect willingness-to-pay, but not a firm’s production costs;
Correlated with g; but not with £, hence use as instruments in supply function
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PRELIMINARIES .*+ Loughborough

PRODUCT VS CHARACTERISTICS SPACE 7 University

@ Product Space

Consumers have preferences over products

Usual utility maximization problem

Leads to demand at the product level

In that sense, demand analysis in product space is more natural (or at least more
familiar)

@ Characteristics Space
e Views products as bundles of characteristics
e Consumers have preferences over those characteristics
o Each individual’s demand for a given product is just a function of the characteristics
of the product

@ We can think of a set of products (Toyota Minivan, Lexus SUV, etc.) or we can
think of them as a collection of various properties (horsepower, size, color, etc.)

@ In general, demand systems in characteristic space are approximations to product
space demand systems and hence, we can either model consumers as having
preferences over products, or over characteristics (note that not all of the
characteristics need to be observed and may form part of the error term)
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PRELIMINARIES i%. Loughborough

PRODUCT VS CHARACTERISTICS SPACE p University

@ Considerations

Dimensionality of Products
Dimensionality of Characteristics
New Goods

Cross elasticities
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PRODUCT VS CHARACTERISTICS SPACE 7 University

o Considerations
e Dimensionality of Products
@ For large number of products (say J = 50), the product space approach leads to the
dimensionality problem mentioned earlier, and may require grouping/nesting these
products. By contrast, if we can reduce J products to just a few K characteristics, and
the preferences over those characteristics are, say normally distributed, then we have to
estimate K means and K (K + 1)/2 covariances. If there were no unobserved
characteristics, then K (1 + (K + 1)/2) parameters would suffice to analyze own and
cross-price elasticities for all J goods.

e Dimensionality of Characteristics
e New Goods
o Cross elasticities
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PRELIMINARIES *‘=. Loughborough

PRODUCT VS CHARACTERISTICS SPACE 7 University

@ Considerations

e Dimensionality of Products
o Dimensionality of Characteristics

o By contrast, if we can reduce J products to just a few K characteristics and the
preferences over those characteristics are, say normally distributed, then we have to
estimate K means and K (K + 1)/2 covariances. If there were no unobserved
characteristics, then K (1 + (K + 1)/2) parameters would suffice to analyze own and
cross-price elasticities for all J goods.

o If there are too many characteristics (K is large), then the the problem of too many
parameters re-appears as in the product space case, and we need data on each of these
characteristics. A solution is to model some of them as unobserved characteristics — but
this leads to the endogeneity problem if the unobserved characteristics (think product
quality) are correlated with the price, which they usually are.

o New Goods
o Cross elasticities
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PRELIMINARIES ;%_ Loughborough

PRODUCT VS CHARACTERISTICS SPACE 7 University

@ Considerations

e Dimensionality of Products
e Dimensionality of Characteristics
e New Goods

o If we are interested in the counterfactual exercise to assess the welfare impact of a new
introduction in an ex-ante period (say a new proposed generic drug or a me-too drug), it
is difficult to do so in the product space (we can do it using ex-post data though), but it is
easier to do this exercise using the characteristic space approach. This is because if we
have estimated the demand system using the characteristic approach, and we know the
proposed characteristics of the new good, we can, in principle, analyze what the demand
for the new good would be. Note however that if the new good is totally different from
products already in the market, i.e., have very different (and new) properties,
characteristics space approaches may not help either (e.g., could we have predicted the
demand for laptops based on the characteristics of desktop computers, or for a new drug
which proposes treatment of a formerly un-treatable disease?)

o Cross elasticities
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PRODUCT VS CHARACTERISTICS SPACE 7 University

@ Considerations

o Dimensionality of Products
e Dimensionality of Characteristics
e New Goods
o Cross elasticities
@ Most of the characteristics space estimation, at least on aggregate data, does not easily
lend to analyzing products that are used in bundles or as complements. This is an
ongoing area of research.
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REPRESENTATIVE OR HETEROGENOUS CONSUMER p University

@ Consider the demand function of single product j in market ¢ for a representative
consumer, given by

gjt = V5 + apje + X585 + &G (22)

where x ;¢ is a vector of product characteristics and ;¢ are the unobserved components of
demand

o Interest is in estimating o; and demand elasticity

e Even though product specific intercepts y; have been included in the model, they are
demand shifters, and as such do not change the sensitivity to price depending on the
level of income or other demographic characteristics such as family size

e Micro studies often show that the price coefficient depends on an important way on
income/wealth, i.e., lower-income people care more about price

e Consequently, if the income distribution varies across the markets, we should expect
the price coefficient to vary across these markets, and we need to find a way to allow
for it
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REPRESENTATIVE OR HETEROGENOUS CONSUMER p University

@ Consider the demand function of single product j in market ¢ for a representative
consumer, given by

@it = V5 + a;pje + X585 + Eje (22)

where x;; is a vector of product characteristics and ;¢ are the unobserved components of
demand

e One could make ~y; to be a function of income, but they are still demand shifters and
do not change the sensitivity to price. Similarly, other demographic differences may
be important to model as well

@ One could potentially include some ad-hoc interaction terms between average values
of demographic variables in market ¢ with price (and other product characteristics)
but may not represent demand derived from a consumer’s utility maximization
problem
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PRELIMINARIES ;%_ Loughborough

REPRESENTATIVE OR HETEROGENOUS CONSUMER p University

@ To make it a heterogenous agent model, it is more typical to build a micro model where
the parameters that enter the utility function of a consumer — say ~y; and «; — vary over
individuals and are perhaps functions of their demographics

In that case, the demand equations to be estimated would end up looking something like

qjt = /%‘jdG(%a‘) + /OlijpjtdF(Oéij) +xt85 + & (23)

e where ;; and o, are person and product specific random intercepts and slope
coefficients, with known or assumed distribution functions 7;; ~ G (7|7) and
a;j ~ F (a]0), and where 6 and 7 are parameters to be estimated and are functions
of demographic variables

e This is called a random coefficients model
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DEMAND MODELS ,*‘:, Loughborough

PRODUCT VS CHARACTERISTICS SPACE 7 University

@ Depending on the context and the question, a researcher needs to be careful about
choosing the appropriate estimation methodology

@ Earlier empirical work focused on specifying representative consumer demand systems
such that they allowed for various substitution patterns, and were consistent with
economic theory

e Linear Expenditure model (Stone, 1954)

o the Rotterdam model (Theil, 1965; and Barten 1966)

e or the more flexible ones such as the Translog model (Christensen, Jorgenson, and
Lau, 1975) and the Almost Ideal Demand System (AIDS — Deaton and Muellbauer,
1980a)

@ We will focus on the AIDS model but within the context of multistage budgeting as well
as variants of the logit models — logit, nested logit, random coefficients logit — based on
works by Berry (1994) and Berry et al. (1995) (henceforth BLP)
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ESTIMATION IN PRODUCT SPACE
(AIDS Model only)
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ALMOST IDEAL DEMAND SYSTEM ,*f‘:, Loughborough

ALMOST IDEAL DEMAND SYSTEM (AIDS) p University

@ Several demand models in product space can be linked to consumer theory — linear,
linear expenditure model, constant elasticity of substitution (CES), Cobb-Douglas,
Rotterdam model, Translog model, etc., with varying theoretical properties

@ A popular demand system, introduced by Deaton and Muellbauer (1980a,b), is the
“Almost Ideal Demand System” (AIDS) — it has several desirable theoretical properties
(not discussed in detail here but see the appendix)’

e aggregates over consumers and allows for non-linear Engle curves

o has a flexible substitution pattern and provides a first-order approximation to any
other demand system

e we can impose and test restrictions on parameters (Symmetry, homogeneity)

e can be linearized via the Stone price index (but that has some consequences on the
estimation of elasticities ... )

T Aggregation and non-linear Engle curves properties are related to the Gorman polar form of the
expenditure functions. Further, AIDS modes are often estimated in the context of separability and
multistage budgeting by a consumer. I have skipped the details but discuss them in more detail in the
Appendix.
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AIDS MODEL %‘=_ Loughborough

EXPENDITURE FUNCTION 7 University

@ The model starts by specifying a representative consumer’s expenditure function, given
by*

In(y) = In(e(p, uo)) = (1 — uo) In(a(p)) + uo In(b(p)) 24)

where y is the total expenditure, p is the vector of prices of relevant goods and uy is the
utility of the representative consumer, and

1 *
Ina(p) = ao + Zaj Inp; + 3 sz:’mlnpj In py
J N J (25)
Inb(p) = Ina(p) + fo Hij
J

@ The expenditure function will be linearly homogenous in p as long as

Zjaj:172j72j=zkvzj=2jﬁj =0

#Recall that an expenditure function e(p, uo) indicates the minimum amount of money necessary to

purchase as many units of goods at the given prices p to obtain utility level ug
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DEMAND AND SHARE EQUATIONS p University

@ Microeconomic theory tells us that if take partial derivatives of the expenditure function
wrt prices, we will obtain the Hicksian (compensated) demand functions — and if we
further replace the utility with indirect utility, we will obtain the observable demand
curves (Marshallian or uncompensated demand functions)

@ Thus, for a set of J products, the demand for an good j is given by

4;(p,y) = I%(aj + > vk Inpx + B;In(y/P))
J k

and where P is a translog price index defined by (26)
1
InP =ao+ gak Inpr + 5 ;g'ykz In px Inp;

1
where ;i = 3 (vjk + Vi;)
@ The demand system given above is estimated in expenditure share form s; = ¢;p;/y, and
hence the system of equations to be estimated are given by
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SHARE EQUATIONS AND RESTRICTIONS 7 University

@ The demand system given above is estimated in expenditure share form s; = g;p;/y, and
hence the system of equations to be estimated are given by

s;p=a;+ > vrlnpe+ B In(y/P) +u;
k

InP = ao—i—Zaklnpk +%Zz'ykilnpklnpi
k ik

o Note that I have added in an econometric error term u; — also, demographic
differences can be added in by modeling them as functions of «;

o The restrictions on the parameter of the cost function impose restriction on the
parameters of the AIDS demand system (27) given by

J J J
Zajzl Z’ij:() Zﬂjzo
j=1 j=1 j=1

D=0 vk =
k

@7

(28)

e Provided the restrictions above hold (or are imposed), (27) represents a system of
demand functions which add up to total expenditure (> s; = 1), are homogeneous
of degree zero in prices and total expenditure taken together, and satisfy Slutsky

symmetry and give nonlinear Engle curves 137215
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STONE PRICE INDEX AND LA-AIDS 7 University

@ The system of equations (27) is non-linear: estimation of parameters in the share equation
requires that we know the value of the price index — but that can’t be computed until we
have the parameters — so need to use non-linear estimation methods

@ A popular simplification is to linearize via the Stone price index which does not use these
parameters (called LA-AIDS)

InP = Z s;lnp; (29)

J

@ We can now estimate the system of equations as In P can be computed from the data
before estimation — but now the problem is that we will introduce a simultaneity bias
(endogeneity) even if prices were exogenous as the share s; appears on both sides of the
equation

e To deal with this endogeneity, in panel settings s; is often replaced by (i) a lagged
value s; :—1, (ii) first period average value 5,0 (aka Laspeyres price index) (iii)
sample average value 5;, (iv) other ... all such choices impact how elasticity is
computed
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ELASTICITIES  University

@ Under LA-AIDS (and with first-period average values in the Stone price index,
i.e., Laspeyres index), the own and cross-price elasticity (Marshallian) for
product j wrt to price of k£ can be computed as

In g; 1 B
— —(_R. NS, 30
Inps Sj( Bidko + Yjk) — Ojk (30)

Njik =

where 0, is equal to 1 if j = k and zero otherwise

@ The expenditure elasticity of product j, denoted e;, and compensated (Hicksian)
elasticities h;y, are then given by

Bj

5j (€1Y)
hjk = njk + ske;

6j21+
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ENDOGENEITY AND INSTRUMENTS 7 University

@ Prices are likely to be endogenous in most applications

@ Earlier we discussed how endogeneity can arise in the context of a competitive
single-product demand-supply model, where due to the simultaneity, the price and the
error term in the demand equation are correlated (see equation (15))

@ The endogeneity concern arises in a variety of differentiated products pricing models as
well

@ Let the demand for the ‘" product be given by ¢; = D;(p, zi; &), where &; is the error
term and consists of unobserved product characteristics, and z; is the vector of exogenous
demand shifters (say the observed product characteristics)

@ If there are L firms, and the Ith firm produces a subset £; of the products, then it
maximizes its joint profit over these products as

M =Y (pr —cr)ar(ps 2, &), (32)

reg;

where ¢, is the constant marginal cost of the r*" product
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ENDOGENEITY AND INSTRUMENTS p University

@ Nash-Bertrand price competition, price p; of any product ¢ produced by firm [ satisfies the
first-order condition

9q-(p, zr; §r)

q:(p,2:;6) + Y (pr —cr) O

reg;

=0 (33)

@ The equilibrium price for product ¢ would be a function of its marginal cost and a markup
term, and in matrix form (for all equilibrium prices) is given by

p=c+Q 'q(p,2;¢), (34)

@ where
@ Qisdefined such that Q,; = —O,; %:ﬁm
@ O is 1/0 joint ownership matrix with ones in the leading diagonals and in r, 4 position if these products are
produced by the same firm and zeros everywhere else
@ The markup term is a function of the same error terms, and hence generally, prices will be
endogenous so that OLS/SUR estimation will lead to biased estimates of the demand

parameters
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ENDOGENEITY AND INSTRUMENTS 7 University

@ The usual starting place for demand-side instruments is to use cost shifters (terms that
affect c, such as cost of raw materials) that are uncorrelated with demand shocks

@ These can work well for homogenous products, but in the case of differentiated products,
we would need cost shifters that vary by individual brands, which are often very difficult
to obtain

@ Two types of instruments that have grown in popularity (use with caution as may or may
not be valid in your application)

o Berry (1994)/Berry et al. (1995) (BLP)
o Hausman et al. (1994)
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ENDOGENEITY AND INSTRUMENTS (A LA BLP) p University

@ Berry (1994) builds on Bresnahan’s (1981) assumption that the location of products in a
characteristics space is determined prior to the revelation of the consumer’s valuation of
the unobserved product characteristics

@ BLP use this assumption to generate a set of instrumental variables: they use the observed
product characteristics (excluding price and any other endogenous characteristics of the
product), the sums of the values of the same characteristics of other products oftered by
that firm, and the sums of the values of the same characteristics of products offered by
other firms
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o Consider the case when there are two firms, X and Y and each is producing three
products A,B,C and D,E,F respectively
e Suppose further that each of these products has two observable characters, S (say,
package size, which is the number of pills in a box) and T (number of times a pill
must be taken during a day for a standard diagnosis)
o Then for the price of A, which is produced by firm X, there are 6 potential
instruments:
o Sjx and T'4 x — the values of S and 7" of product A
o Spx + Scx and Tgx + Tox — the sum of .S and T over the firms two other
products B and C
e Spy +Sgy + Spy and Tpy + Try + Try —the sum of S and T over the
competitor’s products D,E, and F

e Similar instruments can be constructed for prices of other products
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ENDOGENEITY AND INSTRUMENTS (A LA BLP) p University

@ Main advantage of this approach (if valid) is that it gives instruments that vary by brands

@ Problems arise if the assumption that the unobserved characteristics are uncorrelated with
observed characteristics is not valid

o for instance, if the observed characteristics are changing over time, and the change in
observed characteristics is for the same unobserved factors that determine the price

@ Another potential issue arises if brand dummies are included in the estimation, since then
it must be the case that there is variation in products offered in different markets, else
there will be no variation between the instruments in these markets
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ENDOGENEITY AND INSTRUMENTS (A LA HAUSMAN) p University

@ A second set of instruments is due to Hausman et al. (1994) and has been used in several
papers

@ Hausman uses the panel nature of data and the assumption that prices in different areas
(cities) are correlated via common cost shocks, to use prices from other areas as
instruments for prices in a given city and there are no common demand side shocks
across the two cities

@ The identifying assumption is that after controlling for brand-specific intercepts and
demographics, the city-specific valuations of a product are independent across cities but
may be correlated within a city over time

@ Given this assumption, the prices of the brand in other cities are valid instruments so that
prices of brand j in two cities will be correlated due to the common marginal cost, but due
to the independence assumption will be uncorrelated with the market-specific valuation of
the product
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ENDOGENEITY AND INSTRUMENTS (A LA HAUSMAN) p University

@ A second set of instruments is due to Hausman et al. (1994) and has been used in several
papers — common cost shocks and no common demand side shocks across cities

@ The reduced form price of a product ¢ in two cities, a = 1 and @ = 2 at time period ¢, will
be given by
Inpi1e = w1 Incig + Xi1emw2 + vite

(35)

Inpsae = m1 Incir + Xioe ™2 + viae,
@ where

e c;: is the common cost component of the price in two different cities

® X;q¢ are brand level demand shifters (demographics, time trends) as well
city-specific brand differentials (intercepts by brands and cities) due to differences
in transportation costs or local wages

o In general, the error terms v;q+ Will be correlated with the error term in equation (27)
(or @iq¢ in equation (36) in a later example), and hence OLS/SUR will give
inconsistent estimates

e If however, v;1; is uncorrelated with v;2¢, then city two’s prices will be uncorrelated
with the error term in equation (27) (or ¢;1+ in equation (36)), and hence the
instrument will be valid
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ENDOGENEITY AND INSTRUMENTS (A LA HAUSMAN) p University

o Further, since the prices in the two cities are driven by the same underlying common
costs cit, they will be correlated to each other and hence relevant

@ Hausman instruments also rely on no correlation between v;1; and v;2¢ — this assumption
may be invalid if the terms are related due to common demand side shocks across the two
cities

e Example: a national campaign will increase the unobserved valuation of product ¢ in
both cities, thus violating the independence assumption
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MULTISTAGE BUDGETING  University

@ We will estimate such a demand system shortly (using SAS and/or STATA)

e However, AIDS modeling is often done in the context of multistage budgeting
along with separability of preferences (related but distinct concepts)

e Separability refers to the case when a consumer’s preferences for products of one
group are independent of product-specific consumption of products from other
groups

o Multistage budgeting refers to when a consumer (or household) can allocate their
total expenditure on different goods in sequential stages, represented as a utility tree,
where in the first stage, the total current expenditure is allocated to broad groups of
products (food, housing, entertainment) followed by the allocation of expenditures
within each broad group (e.g., meats, vegetables, etc. within the food group)
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MULTISTAGE BUDGETING  University

@ Typical applications involve a three (or four) stage system where

o The top level corresponds to the overall demand for the product (e.g., beer,
pharmaceutical drugs, RTE cereals, etc.)

o The middle level consists of the demand for different market segments (e.g., in the
demand for beer example, the middle segment consists of four groups of beer —
premium beer, light beer, imported beer, and non-premium beer, while in the RTE
cereal example, the middle segments are family, kids, and adult cereals)

o The bottom-level segment involves a flexible brand demand system corresponding
to the competition between the different brands within each segment

@ For each of these stages a flexible parametric functional form is assumed

o The choice of functional form is driven by the need for flexibility, but also requires
that the conditions for multistage budgeting are met

e Note — all stages are not necessarily modeled via AIDS and may include
cobb-douglas and linear models at different levels

@ Examples

e Bokhari and Fournier (2013) — a 4-level system for ADHD drugs
e Hausman et al. (1994) — a 3-level system for Beers
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EXAMPLE W/ MULTISTAGE BUDGETING 7 University

@ We will use a four-level system example from Bokhari and Fournier (2013)

o The top level consists of the aggregate demand for drugs used in the treatment of
ADHD

e The second level segments by the types of molecules used in different drugs (four
different groups of molecules)

o The third level further segments the market by the form of the drug, i.e., if it is 4hr,
8hr or a 12hr effect drug

o The the bottom level, different brands, and generics are considered within each
molecule-form segment of the market

ALL PSYCHOSTIMULANTS

DEX

G
Dexedrine SR
G
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EXAMPLE W/ MULTISTAGE BUDGETING 7 University

@ A typical application has the AIDS model at the lowest level

@ The demand for product ¢ in segment fm, which consists of I, number of products, in
area a at period t is given by

Level 1 (Bottom):
If7n
) + Z Yij fm In Pjatfm + Xiatfm)\z'fm + Piaty,,

=1

Rfmat
Siatfm = Qipm + *Bifmln(m

(36)

@ where

o Siatg, is the revenue share of product ¢
In Pjatf’m,
R fimat is the total expenditure on the segment
Pfynat is a price index for the segment
Xiat ,, are other exogenous variables which may be varying by product, market, or segment and may
include terms like demographic variables, time trends, area fixed effects, or any observable product
characteristics if they vary by markets

is the (log) price of product j (also in segment f-m)

@ Estimate a system of such equations for each segment, either jointly (all equations from
all segments together) or on a segment-by-segment basis — e.g., estimate the system for
MPH-IR, MPH-ER, MAS-IR, etc.
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@ The demand for product % in segment fm, which consists of I, number of products, in
area a at period t is given by

Level 1 (Bottom):

Ifm
Siatgy, = Qg + /B'Lfmln(%) + Z Yij fm In Pjaty,, + Xiatpr, Nigyn T Piat g,
= (36)
o To impose the restrictions, we require (for each segment)
Trm Trm Tfm
S, =1 > vk, =0 > Biy, =0
i—1 i—1 i—1 (37)

g Yik gy =0 Vik prn = Vi pm
k

where the last share equation per segment is not estimated as the shares must add up
to one (recall that the revenue shares are shares relative to total spending in this
segment and not total spending on all drugs)

49/215



AIDS MODEL %‘=_ Loughborough

EXAMPLE W/ MULTISTAGE BUDGETING 7 University

@ The demand for product % in segment fm, which consists of I, number of products, in
area a at period t is given by

Level 1 (Bottom):

ITim
) + E Yis g 10 Pjatr, + Xiat g Nip,, + Piat g,
=1

(36)

Rfmat
meat

Siat gy = Qigpy + Bip I0(

o Price Index: Deaton and Muellbaur’s exact price index Pjq¢ is given by
If'm 1 If"” Ifm
InPfmat = 0, + Y 0igy 10 Piat gy + 5 > Y Vrig, I Prarg, 0 Praty,,
i ik

(38)
This index involves the same parameters that need to be estimated, and hence AIDS
estimation requires non-linear estimation methods
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e Alternatively, use Stone price index
Irm

In Prat = Z Siatpp, 10 Piat . (39)

which makes the estimation linear — but now equation (36) involves shares on both
the left-hand side and right hand side of the equation
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EXAMPLE W/ MULTISTAGE BUDGETING 7 University

@ The demand for product ¢ in segment fm, which consists of [, number of products, in
area a at period t is given by

Level 1 (Bottom):

Ifm
Siatfy, = Qi + ,Bifmln(%) + Z Yij g 10 Pjatg,,, + Xiatg,, Nig,, + Piat s,
= (36)
e Alternatively, use Stone price index
Ifm
In Ppmat = Y _ Siats,, 10 Piat, 39)
i

which makes the estimation linear — but now equation (36) involves shares on both
the left-hand side and right hand side of the equation
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o In the price index, replace observed shares with average shares

o In (39), Hausman and colleagues replace siqt ,, With 84, —area specific average
value of S;at ,,, thus the value is different for each city but the same for all periods
(data is from many periods and a few cities)

o In (39), B&F replace s;q¢ fm with 5;¢ fm period specific average value of S;q¢ foms
thus the value is different for each period but the same for all areas (data is from
many counties and a few periods)
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@ At the next level up (the middle level, or level 2), demand captures the allocation between
segments and can again be modeled using the AIDS specification, in which case the
demand specified by the equation (36) is used with both expenditure shares and prices
aggregated to a segment level

@ Level 2 is aggregation up from level 1
@ Prices are aggregated using either equations (38) or (39) (exact or Stone price index)

@ If the latter (Stone price index) is used, then use S;at ,, for the purpose of creating a price
index for the upper level rather than Sa¢,, or Sit,,,
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@ An alternative for level 2 is the log-log equation used by Hausman, Leonard, and Zona
(1994) and Hausman (1996) and is given by

Level 2 (Middle):
FM

(qirmjat) = Afgm] + Bigm) In(Rat) + Y Tipmin 10 Prat + X(pmjatApm] + Eipmiat
n=1

(40)
@ where (suppressing subscripts at for areas and periods)

® q[sm] is the aggregate quantity of the [fm/] bottom level segment, i.e., the total
quantity of RTE cereals for the family, kids or the adults segments in market at (city
and quarter)

o Pisp is the price of each of these [ fm] segments, written as In P, in the equation
above, where n is an indexing number for the lower level [ fm] segment

o The segment level prices are the price indexes from the lower level equations and
are computed using equations (38) or (39) as discussed earlier

o The variable R, is the total expenditure by market on all related products —e.g., it
is the sum of total sales of RTE cereals over the the three segments, kids, family, and
adults

o And X[fm)q are the exogenous variables that are segment-specific characteristics —

if they are different for each market — or just demographic variables by markets
55/215



AIDS MODEL 3’::- Loughborough

EXAMPLE W/ MULTISTAGE BUDGETING 7 University

@ Note that the lower level of the demand system is AIDS, which satisfies the generalized
Gorman polar form,

@ In order to be consistent with exact two-stage budgeting, the preferences of the second
level should be additively separable (i.e., overall utility from ready-to-eat cereal or all
ADHD drugs should be additively separable in the sub-utilities from the various
subsegments)

@ Neither the second-level AIDS nor the log-log system satisfies this requirement®

@ For exact multistage budgeting to hold to the next level of aggregation (see appendix)
these preferences should be of generalized Gorman polar form

$Deaton and Muellbauer also discuss approximate — instead of exact — two-stage budgeting, and show
that if one uses the Rotterdam model, approximate two-stage budgeting implies that higher stages also have

Rotterdam functional form
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@ B&F have two middle-level segments that differentiate drugs by forms within molecules
(level 2) and by molecules among all ADHD drugs (level 3)

Level 2 (Middle):
R -
Ufaty, = Qfy, + g, In( Pmat) + > 9fn, 0 Prar,, + Xgar, Af, + Bfat,,
mat
h=1
(41)

Level 3 (Middle):

M
ln(qmat) - Am + Bm ln(Rat) + Z an In Pnat + xmatAm + gmat

n=1

@ where (suppressing subscripts at for exposition)
e uy, . is revenue share of form f within molecule m
o P, isthe price of the form (i.e., the price indexes from level 1 segments) given by

I
P, )= Sim )
_ln( fm) jzwlz Sig, ln( J'fm)
o The terms f,m are the total expenditures from all forms within molecule m, and a

price index for molecule m where the later is computed (using Stone index form) as

Frm
In(Pn) = uy,, n(Pr,,) (42)
h=1
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@ For level 2, one needs to estimate as many equations as there are forms per molecule
(F), and repeat the process for each molecule

e For instance, if there are four molecules, and each admits up to three forms, then a
total of four sets of system equations, with each set consisting of three equations
need to be estimated

e Again, depending on the data, the estimations can be joint for all segments, or
segment by segment, and restrictions can be imposed within each segment much like
the lower levels

@ Level 3 is an aggregation from level 2

e Thus, In gy, is the aggregate quantity for segment m and is the the sum of quantities
over all forms within this molecule

e Similarly, In P, is the price of molecule n used earlier in level 2 and is given by (42)

e Total number of equations to be estimated equals the number of upper level
segments, €.g., the total number of molecules and the rest is the same as discussed
earlier in the context of middle-level equation (40)
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@ The top level is the demand for the entire set of subsegments (RTE cereal, beer, ADHD
drugs etc.) and is typically specified as

Level 4 (Top):

43
In qat :A+Bln(Yat)+GlnPat+Xat)\+§at @

@ where

qat 18 the total quantity

Yt is the real income

X4+ are the demand shifters

and P, is the overall price index for these products, given by share weighted sum of
(log) prices at the previous level and given by (again suppressing subscripts at),

M
In(P) = Z Um In(Py,) (44)

m=1

e and where v,, is the revenue share and P, is the price index for molecule m
computed earlier in (42). Note that this form does satisfy additive separability,
which is required for exact two-stage budgeting.
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@ Note that every time we move up one level up, the price index from the lower level is the
‘price’ at the higher level — and the ‘price’ at the higher level is constructed as share
weighted average (NOT average fixed share)

@ Note that this form does satisfy additive separability, which is required for exact two-stage
budgeting
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Multi-budgeting process allows estimation of the conditional demand functions
(conditional on expenditures on the segment) at the lower levels and the cross-price
elasticities are limited to within the segment

From these conditional demand estimates, and estimates of the upper level equations, it is
possible to derive the unconditional cross-price elasticities across the full range of
products in different segments

Conditional on segment expenditure R s, (in market at), price elasticity of a product is

Olng;, 1 / /
— = - P S 1o YY) -1 =7, — }
olpr, ., Sipy, {( Biprn Sk g1 s+ Vid i, ) [f =fim =m]

_1[i:k,f/:f7ml:m]7

(45)

where

o 1[-] is the indicator function

o elasticities conditional on Ry, are zero across products in different f-m segments

o the subscript at has been suppressed in the equation above but is present on all
quantities, shares, prices etc. and Sk pr is either Skt g1, OF Skayr,,, depending on
whichever one was used in the Stone price index in level 1 share equations

o clasticities can be computed in each market or at the average value of shares
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@ Elasticity at level 2 with respect to the price index for the segment and conditional on
segment revenue R,,, in market at (where the market subscripts have been suppressed),
has a similar formula as for the bottom level (since both are in AIDS form) and is given by

Olngy, 1 - r_ I
Itte L {(“bgyy, +arn,) Al =i} =17 = fond =
(46)

@ Conditional cross price elasticity of forms in different level 3 segments (i.e., for forms in
different molecules) is zero

@ Price elasticities at level 3 (for example, at the molecule level), are just the I',,,,
parameters in level 3 equation,

@ Elasticity with respect to price for the aggregate product is the value of the parameter G in
top-level equation
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@ Given all the parameters, unconditional elasticities can be computed as

Olng, _ (1 n Bis,, )Ek / [gffjn, +a } Afm = ]
81npk‘f, , Sifm fm/ Ufm m!

if bfmﬁ -
(14 B Yg, [ g E

Sifm Ufm
1

+ o {’Yikf:n, - ﬂimeka,n/ } Af = f,m' =m]

=k, f = fm = m]

» University

€
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@ Please see the file model-estimate-AIDS-ver0l. sas on how to estimate all the
segments on the simulated data along with computing all the elasticities

@ The above file produces, as output, two HTML files: one with all the regression
coefficients (both SUR and 3SLS) and a second file with all the elasticity measures (SUR
and 3SLS) for conditional and unconditional elasticities

@ An example of an unconditional elasticities matrix is given on the next slide (an 11 by 11
from the full 17 by 17 matrix)
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Unconditional Marshallian Elasticities

Methylin | Generics (MPH-IR) || Ritalin SRLA | Metadate ERCD | MethylinER | Generics (MPH-ER) | Concerta | Aderall | Generic (MAS-IR) || Aderall XR
Ritalin -1.263 0.139 0.403 0258 -0.260 -0.086 0273 0948 | 0.007 0006 0.010
Methylin 0258 0347 0277 0131 -0.132 0044 0139 0482 0.004 0003 0.005
Generics MPH-IR) | 0242 0135 0611 -0.180 0182 0.060 0191 0663 | 0.005 0004 0.007
Ritalin SRLA 0333 0275 0718 2130 -0.077 0478 0.061 2404 |  0.007 0005 0.009
Metadate ERCD 0250 0207 0.539 0.046 -1316 0.065 0.083 1805 | 0.005 0004 0.007
MethylinER 0202 0241 0.630 1493 0259 1945 0752 2108 | 0.006 0005 0.008
Generics (MPHER) | 0249  -0.205 0.536 0182 0.082 0215 1203 1794 | 0005 0004 0.007
Concerta 0.091 0075 0.196 0185 0.187 0.062 0196 | -1528] 0.006 0005 0.008
Aderall 0002 02001 0.004 0.001 0.001 0.000 0.001 0013 | -1.419 0189 0.149
Generic (MAS-IR) | 0.001 0.001 0.002 0.001 0.001 0.000 0.001 0.006 | 0.631 -1176 0.066
Aderall XR 0.001 0.001 0.003 0.001 0.001 0.000 0.001 0010 | 0.069 0053 -0.990
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AIDS MODEL 3’::- Loughborough

ESTIMATION EXAMPLE (WITH CODE) p University

@ We will now use a simulated data set to estimate the AIDS model for the
segment MPH-IR with four drugs

o We will do so using SAS and STATA and where we will use the Stone price index
with fixed weights based on first period (Laspeyres price index)

o We will also estimate the elasticities at the sample mean, which are typically not
easy to estimate unless we use software with proper matrix language — we will do
this second part in SAS only

e We will then use a canned routine aidsills (a package) within STATA, which
makes estimation a lot easier and computes elasticity matrices for us at the sample
mean ... but does not give us the flexibility to set our price index ... and hence the
regression estimates as well as the elasticities will be different

@ Please download the SAS/STATA datasets “simulateddrugsO1.sas7bdat”,
“simulateddrugs01.dat”, the read-me file
“readme-data-simulateddrugsO01l.pdf” and all the *.sas and *.do files
provided in the ‘training’ folder
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AIDS MODEL 3’::- Loughborough

ESTIMATION EXAMPLE (WITH CODE) p University

o MPH-IR segment: four drugs, 780 counties large counties from the US, 4 years
(2000-2003)

@ Relevant variables (re-name as appropriate)

revenues: r4-17

segment expenditure: y2

log prices: Ipo4-lpo7

shares: s4-s7

average shares across all counties in base year: so4-so7

Stone price index for the segment: 1poi2

Hausman style price instruments: lpoz4-lpoz7; lpzi2

Other exogenous variables: t1,t2, Inkids,Inmds, Incaiddrugs, Inmcaidenrollees and

many more available (see readme-data-simulateddrugsO1.pdf)

o If estimating only this segment, re-name the variables so numbers go from 1-4
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@ Retain, rename and/or create new variables (SAS code)

data segmentl22 ;
set training.simulateddrugs0l
(k=sp = fips year s¢-s7 so4-so7 lpol-lpol7 lpozl-lpozl?
1poi2 lpoii2 1pzi lpzii2 y2 tl t2
Inpop lnkids lnmds lncaiddrugs lnmcaidenrollees pepi
msac stabr cenregc cenregn cendive cendivn Cntyst poptot
msapmsassc

' r4-r7 po4-po? pozl-pozl? 7“\ L-oa‘y AQ‘I’K

if year < 2000 then delete;

rename
¥2 =y
lpoiz = 1lpi lpoii2 = 1lpii
1pziz = lpzi 1pzii2 = lpzii
) € et
sed = s01 sos = s02 ahl‘_}
s06 = =03 s07 = s04 L/ V‘M
4 = =1 55 52
=€ = s3 57 =4
r4 =r1 s =r2
ré =13 =7 =14
pod = pl pos = p2
poé =p3 poT = p4
1pl = lpo¢: 1p2 1pos;:
1p3 = lpoé; 1p4 = lpo7;
lpzl = 1lpoz4; 1pz2 = lpazs;

lpz3 = 1lpozé: lpzd = lpozl:

attrib _all_ label=' ';
run; quit:

data segmentl22;:
set segmentl22:
1y = log(y); (le A?W’
lypi = ly - 1pi; é/‘ Cr(a'
lypzi = 1y - lpzi:
tlly = tl*ly; JW} A
t2ly = t2*ly:

run; quit; 68/215



@ Use proc model procedure to estimate (SAS code)

Eproc model data=segmentl22 plots = none print;:
/*omit Last Share Equation for adding up restrictions */
s1 = a2l + bl#lypi + cll*tl + cl2#t2 + cl3*lnkids + cl4*lnmds + cl5*Incaiddrugs + clé*lnmcaidenrolless +
gll*1pl + gl2*1p2 + gl3*1p3 + gl4~lpd

52 = a2 + b2*lypi + c2l*tl + c22%t2 + c23*lnkids + c24*lnmds + c25*Incaiddrugs + c2é*lnmcaidenrclless +
g21%1pl + g22*1p2 + g23%1p3 + g24*1pd ;

53 = a3 + b3*lypi + c31*Cl + c32°t2 + c33*lnkids + c34*lnmds + c35+lncaiddrugs + c36*lnmcaidenrollees +
g31*1pl + g32+1p2 + g33*1p3 + g34*1pd

£it s1 s2 53 / sur 3sls hausman converge = .00001;
/* Homogenity restrictions */
restrict gll + gl2 + gl3 + gl
zestrict g2l + g22 + g23 + g2¢
restrict g3l + g32 + g33 + g34
/*Symmetry restrictions */
restrict gl2 = g21;
restrict g13 = g31:
restrict 923
/* Save estimated coefficients and covariances on prices and expenditures in work.mlf2results*/
/* This is so thata we can later on print the coefficients or call them up in a different */
/* procedure to estimate elasticities */
estimate bl, gll, gl2, gl3, gl4,

b2, 921, g22, 923, 924,

b3, g31, g32, g33, ¢34,

'be’ - (b1+b2+b3),
'galt gl4,
'ga2' g24,
1543 g34,

'gast —(gla + g2¢ + g34),
/outest=mlf2results outcov;
/* Save estimated coefficients and covariances on exogenous variables in work.mlf2resultsB*/
estimate cll, cl2, cl3, cl4, cl5, cls,
c21, c22, c23, c24, c25, c26,
c31, 32, ¢33, ©34, ©35, ©36,

'c4l' - (cll + c21 + c3l),
tca2' - (clz + c22 + c32),
'3t - (Cl3 + ©23 + o33,
tca4' - (cl4 + c24 + c34),
'ca5' - (615 + ©25 + ©35),
tcae' - (clé + c26 + c3é),

/outest=mlf2resultsb outcov
endogenous sl-s3 1pl-lpd lypi
instruments lpzl lpz2 1pz3 lpzé4 lpzi

tl t2 Inkids lnmds lncaiddrugs lnmcaidenrollees
1y tlly t2ly;
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AIDS MODEL 3’::- Loughborough

ESTIMATION EXAMPLE (WITH CODE) p University

@ SAS’s proc model will produce SUR and 3SLS estimates of the parameters
but will not directly provide elasticities

@ We can compute elasticities within the same proc model viathe estimate
command and it will also provide the standard errors but it is cumbersome to do
so here

o Instead we can use various data steps to compute mean values of variables and
then load the estimates in IML to compute elasticity matrices
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@ Use proc iml to compute elasticities (and display all results)

proc iml:
use coeffs:

read all inco coeffs[colname = varnames]:

read all var{bl b2 b3 b4} into b;

b=b;

read all var{gll gl2 gl3 gld}
read all var{g2l g22 g23 g24}
read all var{g3l g32 g33 g34}
read all var{gdl g42 g43 g44}
9 = gl//g2//93//g4;

close coeffs;

use &bnames;

zead all var{descriptien} into key:

close bnames;

use satshares;
read all var{sol s02 s03 s04}

*b i

into
into
into
into

into

read all var{sl s2 s3 s4} into s;

close catshares;

brands
brandsp

*Brandl’, 'Brand2',

t
brands’;

one = i(4):

505 = 508b;

sp =5
emij = (g - s0b)#¥(1/sp) - one;
eta = 1 + b/sp;

etap = eta’;

ehij = emij + s@eta;
naij = enij#(1/s);

I_ab-ﬁl
Pwiqmvd"""s

s a column dector *
al:
92;
o3;
a4;

o -I-’\MWcLaf
|-£ AN LA
Values al 4'551143,5‘1
D e wweam Shor€

'Brand3', 'Brandd'};

i~ Yese Yaw S
i ACR

*Note: b is a column vector and S 13 a Iow Vector*/

E'a.s‘\-f <
Cal
Wods K Lormn

@ Note: additional code to clean print the parameters and elasticities omitted (see
the SAS file) — results follow
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@ 3SLS estimates

Segment MPH-ER (M1F2) -- 3S5LS Estimates

In(R/P)

Inp1

Inp2

Inp3

Inp4

Inkids

Inmds

Incaiddrugs

Incaidenrollees

time

timeSq

SRILA
0.058
0.003
-274
0.019
0.036
0.013
0.160
0.013
0.079
0.014
-012
0.002
0.009
0.001
0.007
0.001
-.004
0.001
-.004
0.000
0.001
0.000

s1 (Ritalin s2 (Metadate s3 (Methyllr; s4 (Generics)

ERICD)
-030
0.003
0.036
0.013
072
0.017
012
0.010
0.048
0.015
0.012
0.002
_007
0.001
001
0.001
0.001
0.001
0.004
0.000
-.000
0.000

0.005
0.002
0160
0013
-012
0.010
-088
0013
~080
0.011
0.004
0.001
-005
0.001
-004
0.001
0.001
0.001
0.001
0.000
~000
0.000

033
0,004
0079
0014
0.048
0015
-.060
0011
068
0019
~004
0,002
0,003
0.001
~001
0.001
0.001
0.001
-002
0.000
0.000
0.000
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@ 3SLS elasticities

at the

ing Shares

Brand1 Brand2

029381 0

(8_1)

29671 0.09805

Brand3 Brand4

0.31143

ETA_I

Expenditure Elasticities (ETA_i) - Per '3SLS"

Brand1 Brand2

1.19769 | 0.89930

Brand3 Brand4

1.05016  0.89364

SUM_i [ETA_i*S_i]
1

1.00000

Conditional Marshallian Price Elasticities (Em_ij) - Per '35LS"

Brand1 Brand2 Brand3 Brand4
Brand1 -1.99197 0.06255 0.52413 0.20761
Brand2 0.14961 -1.2174 -0.03033 0.19317
Brand3 1.61400 -0.13656 -1.90424 -0.62337
Brand4 0.28519 0.18571 -0.18090 -1.18365
c c Price (Eh_ij) - Per '35L§"

Brand1 Brand2 Brand3 Brand4
Brand1 -1.64008 041791 0.64156 0.58061
Brand2 0.41384 -0.94492 0.05784 0.47324
Brand3 1.92255 017503 -1.80127 -0.29631
Brand4 054776 045086 -0.09329 -0.90533
c Hicks-Allen Price (Eh_ijiS_j) - Per'3sL§"

Brand1 Brand2 Brand3 Brand4
Brand1 -6.68202 1.40850 664345 186431
Brand2 1.40850 -3.18468 0.58992 1.51955
Brand3 6.54345 058992 -18.37182 -0.95145
Brand4 1.86431 151955 -0.95145 -2.90698




@ Retain, rename and/or create new variables (STATA code)

use simulateddrugsel, clear

- Load

keep fips year s4-s7 so4-so7 lpol-1pol7 lpozl-lpozl7 /17

1poi2 1poii2 1pzi2 1pzii2 y2 t1 t2 /17

Inpop Inkids lnmds Incaiddrugs lnmcaidenrollees pepi ///
msac stabr cenregc cenregn cendivc cendivn cntyst poptot ///
msapmsa99c  ///

r4-r7 po4-po7 pozl-pozl7 KL .
LLCOVIVY

drop if year < 2000

rename
rename
rename
rename
rename

y2 y
lpoi2z  1pi

lpoiiz lpii Z (@ — tourg
Ipzi2  lpzi

Ipziiz 1lpzii

@ Only part of the code shown (the rest is like SAS code in terms of renaming and
creating new variables)

46
47
48
49
50
51
52
53
54

ce

gen
gen
gen
gen

gen
gen
gen
gen
gen

1pz1 =
1pz2 =
1pz3 =
lpzd =

1y = In
1ypi =
1ypzi =
tily =
t2ly -

1poza
1pozs
1poz6
1poz7

)

1y - 1pi
ly - lpzi
1%y
271y
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@ Estimate via reg3 command (STATA code)

56

57  global eql “(sl lypi t1 t2 lnkids lnmds lncaiddrugs lnmcaidenrollees lpl 1p2 1p3 1p4)”
58 global eq2 "(s2 lypi t1 t2 lnkids lnmds lncaiddrugs lnmcaidenrollees lpl 1p2 1p3 1p4)”
59  global eq3 "(s3 lypi t1 t2 lnkids lnmds lncaiddrugs lnmcaidenrollees lpl 1p2 1p3 1p4)"
60 global eqgd "(s4 lypi tl t2 lnkids lnmds lncaiddrugs lnmcaidenrollees lpl 1p2 1p3 1pd)”
61 global enlist "(1pl 1p2 1p3 1p4 lypi)”

62 global exlist "(1lpzl 1pz2 1pz3 lpzé lpzi ly tlly t2ly)" ~ \

63 \ d*s""‘"‘*l“s
64

65 /*symmetry*/ i Ver ligt

66 constraint 1 [s1]1p2 = [s2]1pl

67 constraint 2 [s1]1p3 = [s3]1pl

68 constraint 3 [s2]1p3 = [s3]1p2 ,é\

69

/ Lppese tovshyountg

78 /* Homogenity restrictions */

71 constraint 4 [s1]1pl + [s1]1p2 + [s1]1p3 + [s1]1lp4d L.

72 constraint 5 [s2]1pl + [s2]1p2 + [s2]1p3 + [s2]1p4 .

73 constraint 6 [s3]1pl + [53]1p2 + [53]1p3 + [53]1p4 35LS of Sok

A

75 vy L/ Y“‘j’.’:

—

76 reg3 Seql Seq2 $eq3, endog($enlist) exog(Sexlist) constr(l 2 3 45 6) 3sls
Cav\-\mno, -

@ This will give a nice compact output of all the regression coefficients (and these
should be the same as what we obtained in SAS)

@
[}

@ However, it will not give elasticity estimate ... for that, you can use either the
nlcom command to program in each elasticity, or use STATA’s matrix language
to compute all of them together
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3SLS estimates (Same as SAS estimates)

s1
lypi
tl
t2
1nkids
1nmds
Incaiddrugs
1nmcaidenrollees
1p1
1p2
1p3
1pa
_cons

1ypi
t1

t2

1nkids

1nmds
Incaiddrugs
lnmcaidenrollees
1pl

1p2

1p3

1p4

cons

0580837
-.8@35763
.80853384
-.812246
0085688
.8067264
-.0@38225
-.2743889
.8356113
.1596983
.8798873
.3881477

0030064
.eeasda3
6.38e-86
.8@15231
.eea94e5
.e@1eass
.8812463
8192285
8128959
.8126453
.e148347
.0267833

19.
-80.

020
oee
eee

.08521913
8836637
8885259
8152311
8867256
8847557
8862652
.312a781
8183359
.1349861
8515798
.3276535

8639761
8834901
. 8805589
88926038
8184121
8886971
8813798
2367018
. 8608863
. 1844745
. 1865948

432642

-.0298788
.0838591
-.0804539
.8124577
-.0869539
-.0011513
.00039349
0356113
-.08716907
-.0119295
.0480083
-.2742804

.8832582
.0088481
6.93e-86
.0816562
.0018213
.0018929
.0913552
.09128953
0170384
.9101917
814876

028849

COOOPCO DD DD ®

020

8362648
8837648
0004675
8892116
8889556
.8832934
.0017213
.0103359
.1850853
.0319048
.0189864

3308235

8234929
8839535
.8004483
8157038
.8849523
8009903
.9835911
. 0603868
-.9838296
.0080458
8770313
2177374

lypi

tl

t2

1nkids
1nmds
Incaiddrugs
1nmcaidenrollees
1p1

1p2

1p3

1p4

_cons

.004918
.091447
-.0001945
.8@35347
-.0ee4987
-.0844576
.0014438
.1596983
-.8119295
-.8881739
-.8595869
-.1548779

0023827

.000035
5.03e-86
.ee12e11
.eea7aas
.eea7933
.eea9s31
.8126453
.8181917
8126584
.8187937
.0211749

PO DD DD ®

@39

.0002479
.0913785
.6e02044
0811806
0864452
08608125
0804831
.1349861
83198438
.1129683
8887422
.1963799

.0895881
.0815155
8801847
. 8858889
8835279
8829027
.ae337e7
. 1844745
.88808458
8633795
8384316
.1133759
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AIDS MODEL 3’::- Loughborough

ESTIMATION EXAMPLE (WITH CODE) p University

@ There are user-written packages in STATA that estimate AIDS models

o A big advantage is that they also provide elasticity estimates along with standard
errors

o A potential disadvantage is that they do not allow as much flexibility as you may
want in terms of how certain issues should be dealt

e If you are going to use such a package, read the documentation carefully to be sure
that any restrictions they impose are ok in your specific case

o The biggest limitation of such packages is they do not allow for multilevel
budgeting/nesting and so you need to do some programming yourself

@ The package aidsills (where ills stands for iterated least squares) provides
lots of good options for estimating the AIDS model
e Importantly, it allows for the endogeneity of prices and the expenditure function (for
endogeneity, it uses the control function approach)
o It provides elasticity matrices at the sample mean
e However, it does not use the Stone price index, and hence the estimates can be
somewhat different
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aidsills (STATA’s user-written package)

1 (55(?}| nstall aidsills if you don't have it */

aidsills sl s2 s3 s4 , prices (pl p2 p3 p4) exp(y) /// ’_"% W‘,‘Ab\{q SL‘G‘\'( J
intercept(tl t2 lnkids lnmds lncaiddrugs lnmcaidenrollees) ///
ivprices(1pzl 1pz2 1pz3 1pzd4) /// ‘4: pfﬂ \J C)QC)

ivexpenditure(lpzi) ///

homogeneity symmetry L’J(Ui’ ’- loﬁj ‘I/‘-S

/*post estimation elasticitiy command */
aidsills_elas

Ju.‘.(\
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aidsills estimates

5 Price co< ﬁ-c}'zm.(’s n 2 “\

r Coefficient Std. err. z P>|z| [95% conf. interval]
s1

gamma_lnpl | -.3640854 .0635678  -5.73 0.000  -.4886761 -.2394948
gamma_1lnp2 -843454 -0369639 1.18 0.240 -.028994 -115902
gamma_lnp3 1715655 .0308277 5.57  0.000 1111443 2319868
gamma_lnp4 1490650 .0501505 2.97  0.003 0507727 2473501
beta_lnx -1080618 -0329923 3.28 0.001 -8433981 -1727255
‘c rho_vpl 9060537  .0275587  32.91  0.000 8520307 0600677
\'JQ( ~ rho_vp2 -.243946 -0209375 -11.65 0.000 -.2849828 -.2029092
(™ ’/7 rho_vp3 | -.2320032 .0189291 -12.26 ©.000  -.2691035 -.1949029
rho_vp4 | -.2708368 .0237526 -11.40 0.000  -.3173905  -.2242822
Cpc%"cp rho_vy -.8485012 -8330555 -1.47 0.142 -.1132887 -0162864
alpha_tl | -.0033301 .0001678 -19.84 0.000  -.0036501  -.0030012
alpha_t2 -B004979 - 0000273 18.23 0.000 - 0004444 - 0005514
alpha_lnkids | -.0220879 .0066957  -3.30 ©0.001  -.0352111  -.0089646
alpha_lnmds 0043943 .002046 1.49 0.136  -.0013797  .0101683
alpha_lncaiddrugs -8072543 -0011148 6.51 0.000 - 8050694 - 0094392
alpha_lnmcaidenrolless | -.0024294  .0016223  -1.50 0.134  -.0056091  .0007503
alpha_cons -8273761 .232217 8.12 2.906 -4277609 .4825131

2 price cofs m €qn 2 -
gamma_1npl -843454 -0386761 1.12 9.261 -.0323498 -1192579
ganma_lnp2 | -.0654016  .018754  -3.49 0.000  -.1021588  -.0286445
gamma_1lnp3 -8089523 -0189301 -0.47 2.636 -8460547 .0281501
gamma_lnp4 -8308999 - 0264069 1.17 0.242 -.0208567 0826566
beta Inx | -.0135093 .0348652  -0.39 0.698  -.0818438  .0548252
rho_wpl -.2914822 -0385356 -9.55 0.000 -.3513308 -.2316336
rho_vp2 5722547  .022957  24.93  0.000 5272598 .6172496
rho_wp3 -B683751 -0202533 -3.38 2.001 -1080709 -.0286793
rho_vpd -.2046372 -0259258 -7.89 0.000 -.2554508 -.1538236
rho_vy | -.0156898 .0349308  -0.45 0.653  -.0841520  .0527733
alpha_t1 -8039348 - 0001736 22.67 0.000 -8035946 -0842749
alpha_t2 | -.0004663 .0000282 -16.51 0.000  -.0005217  -.000411
alpha_lnkids 0093663 .0069308 1.35  0.177 0042177 0229503
alpha_lnmds -.0082764 - 0036442 -2.72 0.007 -.0142429 -.0023099
Alnha Taraiddeues | - Goi01a1  oat1aza 6 R= 6 77 aawdaaa an17248

- 0by
Vs
—_ ,eq 7
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@ aidsills elasticities

UNCOMPENSATED CROS5-PRICE ELASTICITIES

pl p2 p3 pd
b/se b/se b/se b/se
sl -2.013%4% -9.003 0,461 %+ @.187%+*
(0.877) (©.966) (0.061) (0.064)
52 @.118 -1.202%%* -8.015 0.148%*
(0.879) (.069) (0.064) (0.068)
53 1.562%+* 09.028 -1.755F+ -0.546%+*
(0.171) (0.149) (0.139) (0.147)
=4 B.345%** a.186%** -0.180%** -1.139%**
(0.081) (0.071) (0.066) (0.069)
* pe@.1, ** p<d.B5, *** p<a.el
COMPENSATED CRO55-PRICE ELASTICITIES
pl p2 p3 pd
b/se b/ze b/ze b/se
sl -1.613%4% 0.403%++ 0,596+ @.614%+*
(0.070) (©.056) (0.059) (0.058)
52 0.397%+* -0.919%+* @.e79 0.442%F%
(0.873) (@.058) (0.061) (0.061)
53 1.77@%+* a.239% -1.685F+* -0.328%%
(0.159) (0.126) (0.133) (0.133)
s4 B.575FF* 0.420%%* -0.102 -0.893%**
(0.075) (0.060) (0.063) (0.063)

* peB.1, ** p<d.B5, *** pcd.al
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AIDS MODEL 3’::- Loughborough

MULTISTAGE BUDGETING EXAMPLE (WITH CODE) p University

o The appendix provides details about estimating all of the other segments on the
same simulated data and for all 4-levels

o Importantly, it shows how to estimate cross-elasticities between products that
may be in different nests (referred to as unconditional elasticities)

@ You should go over them your self and we will return to them only if there is
additional time at the end

o (there is also an accompanying SAS code available for estimating the full 4-level
system on the simulated data — see file model-estimate-AIDS-ver0l.sas)
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EX M Loughborough
» University

DISCRETE CHOICE MODELS
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DISCRETE CHOICE MODELS ,*f‘:, Loughborough

RANDOM UTILITY MODEL 7 University

@ Consumer chooses a single product from a finite set of goods

@ Each product is defined as a bundle of attributes (including price, which is a special
attribute), and consumers have preferences over these attributes

@ Consumers can have different relative preferences, which gives rise to the random
coefficients models, and they choose the product that maximizes their utility subject to the
usual constraints — when we impose constraints that preferences/marginal utilities are the
same, we obtain the logit model

@ This leads to different choices by different consumers

@ Aggregate demand is then derived as the sum over individuals and depends on the entire
distribution of consumer preferences
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DISCRETE CHOICE MODELS *‘=. Loughborough

RANDOM UTILITY MODEL 7 University

@ Indirect utility for individual n for product j in market ¢ is given by

Unjt = U(th7§jt7ynt —pjt,dnt7llnt,6njz;0n)7 fOI‘j = O7 1,2, ey J (48)

e ‘outside good’ is numbered O (when the consumer does not purchase any of the
observed products)

e price of the outside good is often considered to be exogenous

e vector x;; and random term £;; are the observed and unobserved (to the
econometrician, but not to the consumer) product characteristics and do not vary
over consumers

e product characteristics, multiplied by the parameters 6,, determine the level of
utility for consumer n
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@ Indirect utility for individual n for product j in market ¢ is given by

Unjt = U(Xjt, &ty Ynt — Djt, Ant, Unt, €njt; On), forj=0,1,2,...,J (48

e vectors dy,¢ and v, are vectors of observed and unobserved sources of differences
in consumer tastes

o they do not enter the utility function directly, but rather enter into the model by
changing the value of the parameters of interest for each consumer

e d,: may be a vector of observed demographics (income, family size, etc.), that
affect the parameters (marginal valuations) of product characteristics by individual
and change the value of 8 for each attribute of the product by individual n

e for each product attribute (including price) there is an additional randomness to the
marginal valuation by individuals and is captured by v+

e accounts for other unobserved person-specific characteristics that affect their
marginal valuation for an observed product characteristic — e.g., the number of dogs
a family owns affects their marginal valuation of the size of a car
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@ Indirect utility for individual n for product j in market ¢ is given by

Unjt :U(th7£jt,ynt—pjt,dnt,l/nt,ant;en)7 fOI‘j:O,l,Q,...,J (48)

e if x;; is a kK — 1 vector of observed characteristics, then v,,; is a vector of length &k

o the coefficients ,, depend on d,: and v+

@ €y ¢ 1S a mean-zero stochastic term that enters directly into the utility of product j
for consumer n

o for each consumer, €n: = (€not, €nit, - - -, Engt) 18 @ vector of error terms with the
length of the vector equal to the number of products

@ Ynt is the consumer’s income but is often subsumed into either v or in d, so that
utility is modeled explicitly depending on prices, i.e.,
Unjt = U(th7 gjt»pjty dnt7 Unt, €Enjt; en)

o utility of the outside good is denoted as unot = U (Xot, ot, Ant, Unt, €not; ) and is
normalized to zero
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@ Consumer n will choose product j when ¢ > Uni foralll =0,1,...,Jandl # j

@ Differences in consumer choices arise only due to differences in the marginal valuations
6,, (which are themselves functions of d,.; and v,+), and the idiosyncratic terms €, ¢, a
consumer can be described as a tuple (d, v, €)

@ The set A defines characteristics of the individuals that choose brand j in market ¢

Aji(0) = {(dnt, Unt, €not, €nit, - - - €nat) | Unjt > Unit Vi=0,1,2...J, 1 #j}
(49)

@ Market share of product j is just the probability weighted sum of individuals in the set A j;

@ Let F'(d, v, €) be the population joint distribution function, then the market share of
product j is the integral of this distribution over the mass of individuals in the region A,

sjt(x,p; 0) = / dF(d,v,e). (50)
Aje

If the size of the market is M (total number of consumers) then the aggregate demand for
the jth product is M s;:(x, p; 0)
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@ Let the indirect utility for consumer n for product j in market ¢ be given by

Unjt = Qn(Yn — Pjt) + XjtBn + &t + €nje, where
n=1,...,N, j=0,1,...,J, t=1,2,...,T, and (51)
Bn =B, an = q, for all N

@ where

e X, is a k — 1 dimensional vector of observable characteristics (which may vary by
market)

e & is a scalar that summarizes the unobservable (to the econometrician) product
characteristics

e neither of these terms varies over consumers

e also, no variation in tastes across consumers, and the terms d.,; and v+ do not enter
this model (in BLP/Random coefficient models, 3,, and v, vary across individuals
and in some applications we make them functions of d,, and v,, mentioned earlier —
as in Nevo (2001, 2000a))

e outside option (product 0) is normalized by assuming that the price and other
characteristics are zero for this option so that

Unot = QYn + €not (52)
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@ Utility function in (51) can be written more compactly as just
Unjt = OYn + 05t + €njt, (53)

where §;¢+ = a(—pjt) + x50 + &;¢ is the mean utility for product j in market ¢

@ Since income is common to all options, and consumers only differ in the terms e, the set
of individuals choosing product j is given by

A‘jt(a,ﬁ) = {(6n0t76n1t7'"enJi)|u7Lji > Unlt VZIO,LQJ, l #]} (54)

@ Assume ¢,j; are independently and identically distributed (iid) and follow a Type-1
extreme value distribution, given by

f(€) = exp(—¢) exp(— exp(—e)) and F(€) = exp(— exp(—¢)), (55)

where f(€) and F'(¢) are the PDF and CDF of the random variable e
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@ If €,;¢ are iid Type-1 extreme value distribution, then market share of product j (and the
probability that individual n chooses product j) is

5je(8e) = / dF(e) = —XP0n) (56)
Ajt Zj:O eXp(§jt)
@ Since do; = 0 (so that (exp(do¢) = exp(0) = 1), the share equation becomes
exp(d;¢)
Sjt =
1+ 307, exp(de)
. 7 (57)
Sot = =1- Sit.
L+ 200 exp(dje 2 ’
@ Since s;¢/sor = exp(d;¢), and hence
In(s;¢) —In(sor) = 050 = a(=pje) + %58 + &t (58)

can be estimated using linear regression methods
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@ Since s;:/so+ = exp(d;¢), and hence
In(s;t) — In(sot) = 05¢ = a(—pje) + %8 + & (58)

can be estimated using linear regression methods
@ Instead of estimating .J? number of parameters, we only have to estimate a handful
@ Own and cross-price elasticities depend on only one parameter o

@ The closed (logit) form for the shares is due to both, the extreme value distribution, and
the iid assumption

@ The independence part of iid, causes serious limitations on the substitution patterns
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@ The logit model suffers from the property known as the Independence of Irrelevant
Alternatives (IIA)

@ The (logit) probability that individual n chooses product j is given by (see (56))

V)= ST (o) 0

The relative probabilities of options j and k are thus

Pi(j) _ exp(5))
Pr(k)  exp(dr)

= exp(0; — Ok) (59)

@ Ratio does not depend on characteristics of any other alternative other than those of j and
k

@ Thus the relative odds of choosing j over k are the same no matter what other alternatives
are available or what are the attributes of other alternatives (the values of §’s)
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@ [IA leads to substitution patterns that may be unrealistic
@ Blue Bus/Red Bus Example

e A traveler can commute to work either by car (c) or by blue bus (bb)

o Suppose further that it turns out (for simplicity) that Pr(bb) = Pr(c) = .5

e Say a new type of bus is introduced that is identical in all other respects to the
existing blue bus (fare, route, smell, time it takes to get to work, etc.,) except that it
is red (rb)

e We expect the new probabilities of the travel model would be
Pr(bb) = Pr(rb) = .25 and Pr(c) = .5

o logit model would predict that the substitution from the two old modes of travel
(blue bus or car) to the new mode of travel (red bus) are such that they would depend
on the ratio of old probabilities

e Since the old probabilities were equal, new probabilities for each of the new modes
would be Pr(bb) = Pr(rb) = Pr(c) =1/3

93/215



LOGIT DEMAND MODEL *‘=. Loughborough

ELASTICITIES AND SUBSTITUTION PATTERNS 7 University

@ IIA has implications for own and cross elasticities estimated via logit specification for the
aggregate demand

@ Price elasticities from the model are

, —apji(l —s;) ifj=k
Nike = 0sjt Dkt :{ apje( sj0) ifj ) (60)

Opkt Sjt QPkt Skt otherwise

@ Cross elasticity

e cross price elasticity between product j and k£ depends only on the prices and shares
of product k

e let Coca Cola = product j; Pepsi Cola = product k; and Orange Cola = product [

o if the price of Pepsi Cola increases by 1%, then ceteris paribus, the market shares of
Coca-Cola and Orange Cola will increase by the same proportion even though Coca
Colas and Pepsi Cola are more like each other (blue bus/red bus) compared to
Orange Cola (car)
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@ IIA has implications for own and cross elasticities estimated via logit specification for the
aggregate demand

@ Price elasticities from the model are

(60)

08t Dt {_Oépjt(l —s;e) ifj=k,
Njkt = - =

Oprt Sjt Pkt Skt otherwise

@ Own elasticity

o often market shares (when there are many differentiated products) are small

e own elasticity will be roughly proportional to the price of the product
(njjt = —ap;+ because (1 — sj5¢) = 1)

e if price increases, sensitivity to prices also increases — but people who buy more
expensive products may in fact be less price sensitive compared to those who buy
less expensive products

o if as the price increases, so does elasticity, it implies that the markups for
cheaper-priced products will be larger than those with higher priced products
(price-cost margin inversely related to own elasticities) — markups are higher for
cheaper-priced generics compared to the blockbuster patented?
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o If we compute a logit model on the same simulated data, the elasticity matrix
(from 2SLS) at the sample average value of prices and shares for the first 11
drugs look as follows

%ﬂ

Loughborough
» University

Ritalin -2.579
Methylin 0.018
Generics (MPHIR)  0.018
Ritalin SRLA 0.018
Metadate ERCD 0.013
MethylinER 0.018
‘Generics (MPH-ER)  0.018
Concerta o.018
Aderall o.018
Generic (MASIR) | 0.018
Aderall XR 0.013

@ Notice something odd in the columns?

e look again at the formula for cross-price elasticity between drugs j and k —
Njk = QPktSke ... the formula does not depend on j

0.014
-1.831
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014

0.038
0.038

-1.836

0.033
0.033
0.038
0.038
0.038
0.038
0.033
0.033

0.012
0.012
0.012
-3.384
0.012
0.012
0.012
0.012
0.012
0.012
0.012

0.012
0.012
0.012
0.012
2927
0.012
0.012
0.012
0.012
0.012
0.012

Logit price elasticities —- IV estimates [Entry (j,k) --= DInQj/DInPk]
Ritalin Methylin Generics (MPH-IR) Ritalin SRLA Metadate ERCD MethylinER Generics (MPH-ER) Concerta Aderall Generic (MASR) Aderall XR

0.004
0.004
0.004
0.004
0.004

-2.8%6

0.004
0.004
0.004
0.004
0.004

0.013
0.013
0.013
0.013
0.013
0.013
2650
0.013
0.013
0.013
0.013

0.133
0133
0.133
0.133
0.133
0.133
0.133
-5.007
0133
0.133
0.133

0.082
0.082
0.082
0.082
0.082
0.082
0.082
0.082
-1283
0.082
0.082

0.016
0.016
0.015
0.015
0.018
0.016
0.016
0.016
0.016

-1.290

0.018

0.052
0.052
0.052
0.052
0.052
0.052
0.052
0.052
0.052
0.052
-2.181
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@ Despite the earlier noted shortcomings, logit may be ok in some situations — even if not,
it’s easy to estimate and can be a starting point for more elaborate models

@ If we have aggregate sales data (quantities and prices), along with product characteristics,
equation (58) can be estimated by defining the dependent variable y;; as
yit = In(sjt) — In(sor)

@ To start, we need to estimate the share of the outside good — done by first defining the
(potential) size of the market

@ Examples

e Bresnahan et al (1997) define it as the total number of office-based employees

e BLP define it as the total number of households

e Nevo (2001) defines the potential size of the market as one bowl] of cereal per day
per person

e In the example of ADHD drugs considered earlier, one could define it as a 12-hr
day-long coverage of a standard dose of ADHD drug — 3 x 30mg strength of Ritalin
IR (a 30mg pill covers about 4hrs of a day) which can be multiplied by a base line
candidate population, say 10% of all school-aged children (current ADHD
prevalence rates of whom only 69% are given any ADHD drugs), and a smaller
proportion of the older population
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@ Thus, first define the potential size of the market M

@ Next, based on the observed values of qi4, . . . , ¢, define the shares of the ‘inside’ goods
S1t, - - - Sg¢ relative to the market size as
Sjt = it /My j=1,...,Jforallt=1,...,T. (61)

@ Then, the share of the outside good per market is just
J
sop=1-> sj Wt (62)
Jj=1

@ With these definitions in place, can estimate the equation (58) (reproduced below)
In(sj¢) — In(so¢) = 050 = a(—pje) + %58 + &t (58)

via linear regression methods — in fact can estimate the equation with data from just one
market
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@ With these definitions in place, can estimate the equation (58) (reproduced below)
In(sjt) —In(sor) = 650 = a(—pji) + x;eB + &, (58)

via linear regression methods — in fact can estimate the equation with data from just one
market

@ lety, = (y1t, Y2t, - - - , Yt ) be arow vector (for market ¢) given by
y; = ([Insit —Insoe], [Insar — Insot], ..., [Insye — Insee]) so that y, is a column vector of
length J
o letp, = (p1t,...,pst) and 52 = (&1, ..., £7¢) be row vectors with J entries for the tt" market
@ since x; is a row vector of observable characteristics of product j in market t,ie.,
Xt = (T1jt, T2t - - :EKJf) thus letX = (xlt,xm7 S fo) sothat X;isa J x K
matrix, such that each row is itself a k dlmenmonal vector of obﬂervabfe product characteristics

Then (58) can be written in ‘long’ form and even estimated with observations from one

market ¢
yvie = (Insjy —Insor) = a(—p:) +XeB+ & =8¢
Y1 Ins; —Insp —p1 r11 T2 ... TI1K B &
Y2 Inss — In s —p2 T21 T2 ... 2K B2 &
= . =« . + | . +
ysl, Insy; —Insg . —pJs], rj g2 ... TJK Pr &y

(63)
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@ Data from multiple markets can be vertically ‘stacked’

Y11
Y21

YJ1

Y1t
Y2t

Yt

it
Yyar

L\yyr/4

Insqyy
Insgy

Ins

Insyy
In soq

Ins gy

Insyp
In sop

L\In s 7

y=a(-p)+XB+E=6

— Insgq
—Insgy

—Insqp

— In sg¢
— In sg¢

—1Insqp

— Insgp
— Insgp

—Insgp/ ]

—P11
—P21

—PJ1
—P1t
—P2t

—PJt

—pPiT
—p2T

“\TPJT

1112121 - -
*211 221 - -

TTIK1
“T2K1

TJj11TJj21- -

11t T12¢t - -
T21t T22t - -

TJLtTJ2t- -

11T 12T - -
21T T22T - -

L\z 17 27 -

%‘=.

TJK1

CT1Kt
CT2Kt

TIKt

T1IKT
CT2KT

T/

B1
B2. +

B

€11
£21

&1
£1t
£t
E7t
€1t
£t

E7t
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@ As discussed earlier, very likely that cov(pj¢,&;5¢) # 0

e As before, one needs to find instruments that are correlated with price but not with
any of the unobserved product characteristics
o See the earlier discussion on various instruments (Hausman, BLP, etc.)

@ Regardless of the instruments used, a first approach to consistent estimation would be to
estimate a fixed effects model with dummies for products (and markets)

o Requires that data be available from multiple markets
e Thus, with data available from multiple markets, one can estimate via OLS

In(s;1) — In(sor) = 05t = a(—pje) + xB+ & + & + A&y (64)

where & is the brand fixed effect and &; is the market fixed effect
o Identifying assumption for OLS estimation is

E(A&jipjtlxje) = 0 (65)
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Thus, with data available from multiple markets, one can estimate via OLS
In(s;j¢) —In(sor) = 6t = a(—pjt) +x;tB + &5 + & + A& (64)

A brand-specific dummy variable captures all the observed characteristics of the product
that do not vary across markets, as well as the product-specific mean of the unobserved
characteristics, i.e., x;/3, where, note the missing market subscript of ¢ from the vector x

Thus, the correlation between prices and brand-specific mean of unobserved quality is
fully accounted for and does not require an instrument

Once brand-specific dummy variables are included in the regression, the error term now is
just the market-specific deviation from the mean of the unobserved characteristics, and
may still require the use of instruments if the condition in equation (65) is not true
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@ Thus, with data available from multiple markets, one can estimate via OLS
In(s;j¢) —In(sor) = 6t = a(—pjt) +x;tB + & + & + A& (64)

@ Similarly, if the mean unobserved quality — where the mean is now across all brands — is
different by markets, then it too is fully accounted for by the market dummies

@ If the subscript ¢ for the markets is in the context of time periods, then this could be
because of the unobserved quality of all products are improving over time (think
computer quality over time)

@ If the subscript ¢ is in the cross-sectional setting, then this may or may not make much
sense, since adding such dummies to the equation, the researcher is effectively arguing
that the unobserved quality components of all brands in, Hooker, OK, are higher than
those in Boring, OR

o This may be true if the products under study require some additional local input for
providing the product (radio channels with local DJs and ads), or if shipping from
long-distance affects the quality of all products (fresh food), but not if they are
centrally produced (RTE cereals) and shipping does not impact quality
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@ Two objections to the use of brand dummies

@ Use of brand dummies increases the number of parameters to be estimated by J (rather
than by J?) — may not be too serious an issue if the number of markets is large

@ A potentially more serious difficulty is that the coefficients 3 cannot be identified if
observed characteristics do not vary by markets
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@ Two objections to the use of brand dummies

@ Use of brand dummies increases the number of parameters to be estimated by J (rather
than by J?) — may not be too serious an issue if the number of markets is large

@ A potentially more serious difficulty is that the coefficients 3 cannot be identified if
observed characteristics do not vary by markets

@ Nevo (2001) points out that in fact they can be recovered using minimum distance procedure by regressing
the estimated brand dummy variables on the observed characteristics

@ Let by be the J X 1 vector of brand dummies and let X be the J X K matrix of observed product
characteristics and & be the J x 1 vector of unobserved product qualities, neither of which varies by
markets

@ Letalso b be the estimated values of coefficients (J x 1) of the brand dummies and Vb_l their estimated

J x J variance-covariance matrix, both of which are available from initially estimating equation (64)
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@ Two objections to the use of brand dummies

@ Use of brand dummies increases the number of parameters to be estimated by J (rather
than by J?) — may not be too serious an issue if the number of markets is large

@ A potentially more serious difficulty is that the coefficients 3 cannot be identified if
observed characteristics do not vary by markets

@ Nevo (2001) points out that in fact they can be recovered using minimum distance procedure by regressing
the estimated brand dummy variables on the observed characteristics

@ Let by be the J X 1 vector of brand dummies and let X be the J X K matrix of observed product
characteristics and & be the J x 1 vector of unobserved product qualities, neither of which varies by
markets

@ Letalso b be the estimated values of coefficients (J x 1) of the brand dummies and Vb_l their estimated
J x J variance-covariance matrix, both of which are available from initially estimating equation (64)
o Then, the estimates of 3 and £ in equation

b: = X8 + &, (66)
can be recovered via the GLS estimator
B =X, Vy'X,) 'X|Vy b, and & = b, — X, 8 (67)

where the latter is just the calculated value of the residual term from the regression
above
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o Simulated dataset for the same 17 drugs also available as in the ‘long’ format —
long here means that within each county, the data — shares, prices, other
characteristics, etc. — are set as 17 rows as opposed to 17 different columns per
variable — download simulateddrugs02.sas7bdat and
simulateddrugs02.dat

@ The accompanying SAS program estimate-LOGIT-ver01l. sas shows
how to estimate the model in SAS using OLS/2SLS — it also computes the
elasticity matrix at the sample mean — you can do the same in STATA (I will not
do that here as I will shortly introduce a special package mergersim for
STATA that does all that plus more)
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@ Partial code (define outside good share and shares)

Fldata foo2;

JrERRRERRRRRARRRAY

cutside good, potential market and shares:

Potential market is defined via 30mg * 3 of mph per day.
a ADHD kid gets 30mg per day.

30/1000 grams per day.

30%30/1000 grams per month.

(30%30%12) /1000 grams per year.

9712 grams per year.

10.8 grams per year.

> potential market 15% of all children + 5% of other adults

mso
consuming at 3 times the DDD amount OR 3 times the current consumption

rate per child.

ERRARRARAARARR AR

set foo;
apc = qa/ (.07*.75%kidsStlg); ** quantity per child;
mso = ((kids5tl9)*.15 + (poptot - (kids5tlS + kidsOtd))*.05)* (3%gpc);
q0 = mso - gq ; ** outside good;
50 = g0/mso; ** share of outside good;
inso = log(s0): ** log of share of outside good:
sgi = gi/mso; *+ re-compute shares relative to potential market ;

/* or use

aoc = ga/(.1*.60*kids5tld) ** quantity per child:
mso = ((kids5tl%)*.1 + (poptot - (kidsStlS + kidsOt4))*0.01)* (gpe):

Q0 = mso - ag ; ** outside good;

50 = g0/mse; ** share of outside good;

lns0 = leg(s0);: ** log of share of outside good;

sgi o= gi/mso; * re—compute shares relative to potential market ;
=/

if sqi ~ = 0 then lnsgi log(sqi); ** log of shares:

if sqi ~ = 0 then Insgim0 = lnsgi - 1nsO;

if sgi = 0 then lnsgi = .;
if sgi en lnsgi 106/215
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@ Partial code (define outside good share and shares)

proc syslin data = logits 2sls :
ENDOGENOUS lnsqim0 poi ;
INSTRUMENTS pzi tl t2
lnkids lnmds lncaiddrugs lomcaidenrollees
drugl-druglé dl-d48;
model Insgimo = poi tl t2

lnkids lnmds lncaiddrugs lomcaidenrollees
drugl-druglé dl-d48;

_—
lmn: qmr.:\ /

Band Avawes ¢ State Iumie
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o Partial output

Variable

Intercept

Inkids

Inmds
Incaiddrugs
Inmcaidenrollees
DRUG1

DRUG2

DRUG3

DF Para_meler
Estimate

1| 0502753
1| -521234
1| -0.00388
1 0.000364
1| 0.034712
1| 0018831
1 0.084388
1| 0.039136
1| -381388
1| -as3114
1 -3.52148

Standard
Error

0.485966
0211303
0.000188
0.000025
0.006464
0.004072
0.013589
0033232
0.107768
0.138050
0.136902

tValue

103
-24 87
-19.79

14.35

537

487

478

118
-3632
-32.82
-25.72

Pr=|t|

0.3009
<0001
<0001
<.0001
<0001
<0001
=0001
02339
<0001
<0001
<.0001

Loughborough
» University

Parameter Estimates
Variable
Label

Intercept

poi Price ($/D0D gms) (Constant 2000 Dollars) — price of 4,
Time (11): 1 is year 1999

Time Sq (t2): 1 is year 1999

Log (Total Ameunt Reimbured for Drugs by Medicaid)

Log(Medicaid Enrolless in State (Census Estimates))
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@ Partial output (2SLS vs OLS)

Logit price elasticities IV estmates [ENtry (,K) - LINQYLINKK]

Ritalin Methylin | Generics (MPH-IR) Ritalin SRLA Metadate ERCD | MethylinER Generics (MPH-ER) Concerta Aderall Generic (MAS-IR)| Aderall XR [
Ritalin 2579 0014 0.038 0.012 0012 0.004 0.013 0133 0.082 0016 0.052
Methylin 0018 1831 0.038 0.012 0012 0.004 0013 0133 0.082 0016 0.052
Generics (MPHJR) | 0.018 0014 -1.836 0.012 0012 0.004 0.013 0133 0.082 0016 0.052
Ritalin SRLA 0018 0014 0.038 -3.354 0012 0.004 0013 0133 0.082 0016 0.052
Metadate ERCD 0018 0014 0.038 0.012 2827 0.004 0.013 0133 0.082 0016 0.052
MethylinER 0018 0014 0.038 0.012 0012 -28% 0013 0133 0.082 0016 0.052
Generics (MPH-ER) 0.018 0014 0.038 0.012 0012 0.004 2650 0133 0.082 0016 0.052
Concerta 0018 0014 0.038 0.012 0012 0.004 0013|5007, 0.082 0016 0.052
Aderall 0018 0014 0.038 0.012 0012 0.004 0.013 0.133| 1253 0016 0.052
Generic (MASR) | 0018 0014+ 0.038 0.012 0012 0.004 0013 0133 0.082 -1.290 0.052
Aderall XR 0018 0014 0.038 0.012 0012 0.004 0.013 0133 0.082 0016 2181
Dexederine 0018 0014 0.038 0.012 0012 0.004 0013 0133 0.082 0016 0.052
Dextrostat 0018 0014 0.038 0.012 0012 0.004 0.013 0133 0.082 0016 0.052
Generics (DEXIR) | 0.018 0014 0.038 0.012 0012 0.004 0013 0133 0.082 0016 0.052
Dexederine SR 0018 0014 0.038 0.012 0012 0.004 0.013 0133 0.082 0016 0.052
Generics (DEX-ER) | 0.018 0014+ 0.038 0.012 0012 0.004 0013 0133 0.082 0016 0.052
Offlabels 0018 0014 0.038 0.012 0012 0.004 0.013 0133 0.082 0016 0.052

Logit pri icities — OLS estimates [Entry (j,k) — DinQij/ 1

Ritalin Methylin | Generics (MPH-IR) Ritalin SRLA Metadate ERCD | MethylinER Generics (MPH-ER) Concerta Aderall Generic (MAS-IR)| Aderall XR
Ritalin 0308 0.002 0.005 0.001 0.001 0.000 0.002 0.016| 0.010 0.002 0.008
Methylin 0002 0219 0.005 0.001 0.001 0.000 0.002 0.016  0.010 0.002 0.006
Generics (MPHJR) | 0.002 0002 -0.220 0.001 0.001 0.000 0.002 0.016| 0.010 0.002 0.008
Ritalin SRLA 0002 0002 0.005 -0.403 0.001 0.000 0.002 0.016  0.010 0.002 0.006
Metadate ERCD 0002 0002 0.005 0.001 0350 0.000 0.002 0.016| 0.010 0.002 0.008
MethylinER 0002 0002 0.005 0.001 0.001 -0.347 0.002 0.016  0.010 0.002 0.006
Generics (MPH-ER) 0.002 0002 0.005 0.001 0.001 0.000 0317 0.016| 0.010 0.002 0.008
Concerta 0002 0002 0.005 0.001 0.001 0.000 0002) -0.599 0.010 0.002 0.006
Aderall 0002 0002 0.005 0.001 0.001 0.000 0.002 0.016| -0.150 0.002 0.008
Generic (MASR) | 0002 0002 0.005 0.001 0.001 0.000 0.002 0.016  0.010 0154 0.006
Aderall XR 0002 0002 0.005 0.001 0.001 0.000 0.002 0.016| 0.010 0.002 -0.281
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NESTED LOGIT gr_%_ Loughborough

RELAXING THE IID RESRTRICTION p University

@ The IIA problem in logit arose from the iid structure of the error terms

@ Particularly, while consumers have different rankings of the products, these differences
arise only due to the iid shocks to the error term €, ;¢

@ One solution to this problem is to make the random shocks to the utility correlated across
products by generating correlations through the error term

@ An example is the nested logit model in which products are grouped and €, is
decomposed into an iid shock plus a group specific component which results in a
correlation between products in the same group

@ The basic idea is to relax the IIA by grouping products (similar to the grouping idea in
multilevel budgeting/AIDS we saw earlier), but within each group, we have a standard
logit model, and products in different groups have less in common and are not good
substitutes
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UTILITY FUNCTION AND MARKET SHARES p University

@ Let the utility for consumer n for product j in group g be
Unjt = 0jt + Cngt(0) + (1 = 0)enju, (68)

@ where

@ 5 = a(—pjt) + %58 + &;¢ is the mean utility for product j common to all consumers (as before)
€nj¢ is (still) the person-specific iid random shock with extreme value distribution

but ¢ g¢ is the person-specific shock that is common to all products in group g

The distribution of the group-specific random variable (,, 4¢ depends on the parameter o so that
Cngt(0) + (1 — 0)€n ¢ is extreme value

If o approaches zero, the model is reduced to that of the simple logit case discussed earlier while if it
approached one, only the nests matter

@ Gives a closed form that can be estimated using linear estimation methods

In(sjt) — In(sor) = a(—=pje) +x;¢B + o In(sje/sgt) + e (69)
@ The additional term In(s;¢/sg¢) is the share of product j in group g

@ All previous issues (define outside good, use of dummies, instruments etc.) apply here as
well

@ One difference from the previous case is that even if prices are exogenous, the term
In(s;¢/sg¢) is endogenous and we need some instrumental variable for it
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UTILITY FUNCTION AND MARKET SHARES p University

@ A significant refinement over the model comes from the nested logit variant — groups of
products that are close substitutes are placed in nests — and consumers choose the nest and
then the specific product

In(s;¢/s0t) = a(—pjt) + x;¢8 + o In(s;t/sgt) + &t

@ The additional term In(s;:/sg¢) is the share of product j in group g (and the term is
endogenous as is often the price variable)

@ The figure shows a nesting choice of 28 across four molecules, where the patient/doctor
first chooses a molecule and then the brand

1127215



NESTED LOGIT gr_%_ Loughborough

UTILITY FUNCTION AND MARKET SHARES p University
@ We can refine this further to second-level nesting (or more, but becomes difficult)

In(sjit/s0t) = a(=pjt) +%;¢B + 011n(sjt/sngt) + o2 In(sne/sgt) + &

@ The additional terms In(s;;/sngt) and In(sp¢/sqe) are the shares of product j in
subgroup h of group g and of group h in group g

@ The figure shows a nesting choice of 28 across four molecules and two formulations,
where the patient/doctor first chooses a molecule, then a formulation and then the brand
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ESTIMATION EXAMPLE — MERGERSIM TOOL 7 University

@ Such a model can be estimated and used in merger simulations with STATA’s user written
command mergersim by Bjornerstedt and Verboven (2014)
@ In a nutshell

e Easy to use add-in for STATA

o Estimates a logit, nested logit, or double nested logit (OLS or IV) using standard
STATA commands for linear regressions with or without fixed effects

e By declaring product id and firm id variables, initialization of the program
automatically creates ownership matrix ®g in the background, and using estimates
from the logit model and observed shares and prices, creates the markup 2o matrix

o Post estimation gives estimates of marginal costs and allows for mergers between
any number of firms — also allows for the computation of minimum required
efficiencies per product for price not to increase after the merger

@ Example/demo follows ...
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ESTIMATION EXAMPLE — MERGERSIM TOOL p University

@ Sample sales data by the authors from the European car market

e Markets: Countries-year combination — Belgium, France, Germany, Italy, UK and
years 1970-1999

e Products: 351 (for instance Alpha Romeo 33 is a distinct product from Alpha
Romeo 75); brands 38

e Firms: 26

o Nests: upper nest is segment — subcompact, compact, intermediate, standard, and
luxury and lower nest is domestic which takes values 1/0 if a firm is domestic or
foreign in a given market (for instance, Fiat is domestic in Italy and foreign in other
countries)

e Price is measured in 1,000 Euro (1999 values) and quantity is new car registrations

o The data set includes several other product characteristics such horsepower, fuel
efficiency, height, width
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ESTIMATION EXAMPLE — MERGERSIM TOOL 7 University

@ The program runs in four parts

o Step 1: Initialize the program (mergersim int) — this entails declaring variables
firm and product id, price, and quantity variables, variables that capture the nest, and
variables for potential market size (so shares can be computed)

o Step 2: Estimate the logit or nested logit model using standard STATA commands
(including I'V-based commands) — the previous step has already created all the
variables necessary for estimating the model

e Step 3: Compute pre-merger variables (mergersim market) — this step
computes the mean gross valuation of each product §;; = xj¢3 + &+, own and
cross elasticities, and marginal costs

o Step 4: Simulate a merger (nergersim simulate)— performs a merger
simulation where a user specifies which firms are merging and outputs results

@ Selected inputs (code snippets) and outputs follow
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ESTIMATION EXAMPLE — MERGERSIM TOOL 7 University

@ Step 1 —(mergersim int)

o Set the size of the potential market to 1/4 of the population and run step 1
initialization

population variable is pop, and market size variable is MSIZE

price variable is price, quantity is qu, and firm id is firm

nesting variables are segment and domestic

the product id is co, and is declared as part of STATA’s panel declaration command
(xtset) along with the other dimension being yearcountry
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ESTIMATION EXAMPLE — MERGERSIM TOOL 7 University

egen yearcountry=group (year country), label
. xtset co yearcountry
panel wvariable: co (unbalanced)
time variable: yearcountry, 1 to 150, but with gaps
delta: 1 unit

gen MSIZE=pop/4

. mergersim init, nests(segment domestic) price(price) guantity(qu) marketsize (MSIZE) firm(firm)

MERGERSIM: Merger Simulation Program
Version 1.0, Revision: 218

Unit demand two-level nested logit

Depvar Price Group shares

M 1s price M 1sjh M 1shg

Variables generated: M 1s M 1sjh M 1lshg
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ESTIMATION EXAMPLE — MERGERSIM TOOL

@ Step2 - (estimate parameters of nested logit model )

Loughborough
University

o In this simple example, we used a fixed effects linear model via xt reg (where the
fixed effects are over the product ids) but should be run using ivreg or xtivreg

. xtreg M 1s price M 1sjh M 1shg horsepower fuel width height domestic year country2-c

> ountry5, fe

Fixed-effects (within) regression Number of obs 11,483

Group wariable: co Number of groups = 351
R-sqg: Cbs per group:

within = 0.8948 min 1

between = 0.7576 avg = 32.7

overall = 0.8427 max = 146

F{13,11119) = 7271.50

corr(u i, Xb) = -0.0147 Prob > F = 0.0000

M 1s Coef. 5td. Err. t P=|t] [95% Conf. Interwval]

price -.D468375 .0013002 -36.02 0.000 -.0493861 -.0442888

M 1sjh . 9047371 .0041489 218.07 0.000 .B966045 9128696

M lshg . 5677968 .0085109 66.71 0.000 .551114 . 5844796

horsepower .0038279 .0005%21 6.46 0.000 .0026672 . 0049886

fuel -.0270919 .004539 -5.97 0.000 -.0359892 -.01815946

width .0103757 .0016768 6.19 0.000 .00D70889 .0136625

height . 0004322 .0022161 0.20 0.845 -.0039117 . 0047761

domestic . 5230743 .0124205 42.11 0.000 -4587279 . 5474206

year .0017336 .0012022 1.44 0.149 -.000623 .0040502
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NESTED LOGIT

ESTIMATION EXAMPLE — MERGERSIM TOOL

@ Step 3 —(back out marginal cost etc.) (here we do so using only 1998 data)
— output part 1

. mergersim market if year == 1998

Supply: Bertrand competition
Demand: Unit demand two-level nested logit

Demand estimate

xtreg M 1s price M 1sjh M 1shg horsepower fuel width height domestic year country2-cou
> ntry5s, fe

Dependent variable: M 1s

Parameters

alpha = -0.047
sigmal = 0.905
sigmaz = 0.568

Own- and Cross-Price Elasticities: unweighted market averages

variable mean ad min max
M ejj -7.488 3.761 -30.454 -1.710
M ejk 0.766 1.276 0.003 10.908
M ejl 0.068 0.120 0.000 0.768
M ejm 0.001 0.002 0.000 0.011

Cbhservations: 449
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ESTIMATION EXAMPLE — MERGERSIM TOOL

» University

Loughborough

@ Step 3 —(back out marginal cost etc.) (here we do so using only 1998 data)

— output part 2

Pre-merger Market Conditions
Unweighted averages by firm

firm code price Marginal costs Pre-merger Lerner
EMW 20.154 17.499 0.146

Fiat 15.277 10.553 0.372

Ford 14.557 11.523 0.207
Honda 20.094 17.941 0.128
Hyundai 12.915 10.849 0.179
Eia 10.814 8.772 0.207

HMazda 14.651 12.557 0.156
Mercedes 25.598 21.569 0.162
Micsubishi 15.955 13.825 0.145
Nissan 15.438 13.259 0.159

GM 21.054 18.633 0.135

PSR 16.243 13.533 0.194
Renault 15.518 12.837 0.203
Suzuki 9.289 T.226 0.234
Toyota 14.560 12.430 0.172

W 18.990 16.388 0.181

Volvo 23.167 20.912 0.099
Daewoo 13.871 11.789 0.170

Wariables generated: M costs M delta
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ESTIMATION EXAMPLE — MERGERSIM TOOL p University

@ Step4 — (mergersim simulate) Simulate a merger between GM (seller=15) and
VW (buyer=26) and looks at effects in Germany 1998 — output part 1

| . mergersim simulate if year == 1998 & country == 3, seller(15) buyer(26) detail
firm code Pre-merger Post-merger Relative change
BMW 17.946 18.002 0.003

Fiat 15.338 15.341 0.000

Foxd 13.093 13.362 0.023

Honda 15.778 15.780 0.000
Hyundai 12.912 12.912 0.000
Kia 11.276 11.276 0.000

Mazda 14.229 14.231 0.000
Mercedes 20.114 20.155 0.003
Mitsubishi 15.832 15.834 0.000
Nissan 15.101 15.103 0.000

GM 19.921 21.054 0.076

PSA 16.397 16.399 0.000
Renault 15.292 15.295 0.000
Suzuki 9.225 9.225 0.000
Toyota 13.019% 13.020 0.000

W 17.182 17.739 0.036

Volvo 22.149 22.154 0.000
Daewoo 13.483 13.484 0.000
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ESTIMATION EXAMPLE — MERGERSIM TOOL

@ Step4 — (mergersim simulate) Simulate a merger between GM (seller=15) and

%‘=’

VW (buyer=26) and looks at effects in Germany 1998 — output part 2

Market shares by gunantity
Unweighted averages by firm

firm code Pre-merger Post-merger Difference
BMW 0.074 0.07% 0.005

Fiat 0.043 0.045 0.003

Ford 0.095 D.132 0.037
Honda 0.012 0.012 0.001
Hyundai 0.006 0.006 0.000
Eia 0.003 0.003 0.000

Mazda 0.025 0.027 0.002
Mercedes 0.100 0.116 0.017
Mitsubishi 0.015 0.017 0.001
Nissan 0.025 0.027 0.002
GM 0.166 0.108 -0.058

PSR 0.034 0.037 0.003
Renault 0.051 0.054 0.003
Suzuki 0.006 0.006 0.000
Toyota 0.027 D.02% 0.002
VW 0.300 0.280 -D.020

Volvo 0.012 0.013 0.001
Daewoo 0.006 0.007 0.001

Loughborough
» University
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ESTIMATION EXAMPLE — MERGERSIM TOOL

EX M Loughborough
» University

@ Step4 — (mergersim simulate) Simulate a merger between GM (seller=15) and
VW (buyer=26) and looks at effects in Germany 1998 — output part 3

Pre-merger Post-merger
HHS: 1501 1972
C4a: 66.07 71.50
C8: 86.21 88.01
Change
Consumer surplus: -1,839,750
Producer surplus: 1,303,353
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ESTIMATION EXAMPLE — MERGERSIM TOOL 7 University

@ The mergersim tool also allows a user to explore the effects of

e efficiencies (by changing marginal costs)

o remedies such as divestitures (via adjusting ownership matrix for other products by
the merging parties)

e conduct parameter (allows for partial collusion pre-merger)

@ The tool also allows for calibration where users can set the values of «, o1, o2 and
computation of minimum required efficiencies so that prices do not increase

@ As such can be used as an initial or additional screen
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GENERALIZED METHOD OF MOMENTS *‘=. Loughborough

BRIEF REVIEW  University

@ Say we have an additional set of exogenous variables z; that are correlated with x; but not
with the error terms so that E[u|z:] = 0

@ Then, E[(y: — x:03)|z:] = 0, and as before, we can multiply z; with the residual terms to
get K unconditional population moment conditions

E[z;(y: — x:3)] = 0 (70)

@ Then the MM estimator solves the sample moment conditions given by

T
Z (ye —x:8) = 0 (71)

ﬂ \

@ If dim(z) = K, then this yields the MM estimator which is just the IV estimator

B = (3 7ixe)” szyt = (ZX)"'2Yy (72)
t
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BRIEF REVIEW  University

@ If however, dim(z) > K, (more potential instruments than the original number of
regressors) then there is no unique solution — more moment conditions than the number of
parameters to be estimated

@ We can use the GMM estimator which chooses ,3 so as to make the vector
T Zle z;(y: — x+(3) as small as possible using quadratic loss

@ Thus find ,@GMM which minimizes the function

Zzt yr — Xi/3)

where @ is a dim(z) x dim(z) weighting matrix

Z zi(ye — xeB ] (73)

@ In matrix notation define y = X3 + u (where y anduare ' x 1, X is T' x K and 83 is
K x 1 as before), and let Z be T' x R matrix, then Zthl z;(y: — x¢3) = Z'u and (73)

becomes Q(8) = [%(y - Xﬂ)’Z} @ [%Z’(y - Xﬂ)} 74)

where ® is a R x R full rank symmetric weighting matrix
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BRIEF REVIEW  University

@ First order conditions, 9Q(3) /98 = 0 for the linear IV case are

2Q(B) 1o L,
—t = 2| =X'Z|®|=-Z(y—X =
03 T T (y B)| =0 (75)
@ Then the GMM linear IV estimator and its variance are
Bown = (X'Z®Z'X) " X'28Z'y

2 ’ I\ —1 ’ ~ ’ ’ f 1 (76)
V(Bown =T (X'28Z'Z) " (X'2889ZX) (X'Z9Z'X)

where S is a consistent estimate of

.1 /
S = phmf Z Z [ziuiu,z;] (77
i

128/215
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BRIEF REVIEW  University

@ Different choices of the weighting matrix ® lead to different estimators

@ If the model is just identified (R = K) and the matrix X'Z is invertible, then the choice
of the weighting matrix ® does not matter as the GMM estimator is just the IV estimator:

Bown = (X'Z®Z'X) ' X'28Z'y
=(Z'X) e (X'2) (X'Z2)®Z'y (78)
=(2'X)'Zy = Bu
@ If R > K, and the errors are homoscedastic, then ® = (T'Z'Z)~* and
S = [sQT_1Z' Z} leads to the usual 2SLS estimator
Bowm = (X'P X) (X'P.y) = Bosts
V(Boum) = 5° (X'2(2'2)7' 2 x)
where P, = Z(ZZ') 'Z and s> = (T — K)™* S a2

(719
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BRIEF REVIEW  University
@ Alternatively, if errors are heteroscedastic, then instead we can use
V(Bown) = T (X'2(Z'2)'Z'X) " (X'2(2'2)'8(2'2)'ZX) (X'Z(2'Z) ' Z'X
andS =71 Z ﬁfztz/t.
t (80)

@ The optimal weighting matrix (optimal in the sense of efficiency/smallest variance) is one
which is proportional to the inverse of S

@ The optimal GMM two-step estimator (for the linear IV case) is when ® = St
—~ ~ -1 ~
Booww = (X'287'Z'X)  X'28'Zy @81)

@ Step 1: Use 2SLS as the first step to estimate E and then compute residuals as in the heteroscedastic case
above R
@ Step 2: Construct the S™ ! and then use it in (81) to compute the estimator

@ Variance is given by

V(Boosm) = T (x’zé*lz’x) - (82)
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BRIEF REVIEW  University

@ This approach extends easily to the general case with other moment conditions
@ Let O be a g X 1 vector of parameters and h(w, 8) be an r x 1 vector function such that
at the true value of the parameter 6y, there are » moment conditions (r > g) give by

E[h(w,600)] =0 (83)

@ where the expectations are not zero if @ # ¢
@ the vector w; includes all observable variables, including y, x+ and, z

@ Then the GMM objective function (equivalent of (73)) is

1 "1
QB) = fgh(wt,e) ® T;mwt,e)] (84)
and the corresponding first-order conditions are
0Q(B) |1 < oh,(0) I, -
AP | P | = h:(0)| =0
a8 T4 96 TZ () (85)

where h¢(0) = h(w.0)

@ Note that If hy(0) = z;(y: — x¢3) = z;u then Oh/03 = —z;x; and the earlier results
of linear IV follows
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BRIEF REVIEW  University

@ GMM also extends to non-linear models, where the error term u; may or may not be
additively separable

@ For instance, us = y: — g(x¢; @) where g(+) is some nonlinear function but the error term
is additively separable, or non-separable so that u: = g(y¢, x¢; 0)

@ If E(u¢|x¢) # 0 but we have instruments available so that E(u;|z,) = 0, then the moment
conditions are E(zju:) = 0

@ The GMM estimator minimizes the objective function
Q(B) = lu/Z P lZ'u (86)
T T

@ Unlike the linear case, the first-order conditions do not give closed forms for the
estimators
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GMM ESTIMATION  University

@ Earlier saw that standard logit can be estimated as a linear equation when the dependent
variable is defined as y;; = In sj; — In so; and the equation is given as
Yir = o(=pje) + %58 + &5

@ When the price is correlated with the unobserved heterogeneity term £;;, so that
E(p, &) # 0 and we have a set of instruments such that E(Z¢) = 0, then we can use the
GMM/IV methods described in the earlier section to estimate the parameters of the
equation

@ The linear equation arose out of Berry’s (1994) inversion trick

@ Useful to work through this again for extending the method to random coefficients model
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GMM ESTIMATION  University

@ Let the observed shares be given by s so that s; = (so¢, S1t, - - - , SJ¢) Where, as before,
sor =1— Z‘j]=1 Sjt
@ Letalso 6, = [a B } ’) and let model predicted market shares in equation (57) be given
by § so that §; = (So0¢, S1¢, - -, 8J¢)
@ Given a value of 61, can compute the model predicted shares as
exp(J;t)

Sip =
TS exp(030) ©7

@ Thus, may want to use NLS methods to find €1 to minimize the distance between
predicted and observed market shares

J
min' > (550 = 55e(00 B 6 oy £0)]” (87
j=1

@ The econometric error terms &; — unobserved product qualities — enter the predicted
market share and are not additively separable. Hence, non-linear least squares methods
will not give consistent estimates even if prices were not endogenous
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GMM ESTIMATION  University

@ Assume that we have a set of M instruments given by matrix Z with dimensions
JT x M (the jt*" row is given by zj; = (zj(-?, zﬁ), cey (M))) which are uncorrelated
with error terms in the utility model &;;

@ Then the M moment conditions are given by E(z},&;:) = 0

@ The key insight comes from the fact that the error terms enter the mean utility linearly
05+ = a(—pjt) + x;¢3 + &;¢), and that they only enter the mean utility and hence one
can separate out the £;; terms to compute the moment conditions above

5 Z e = 5 Z 270850 — %518 + apjt) (88)

@ Thus want to estimate the parameters «, 3 that minimize the sample moment conditions
(or rather their weighted sum of squares)

@ But since we cannot observe §;¢+ we cannot proceed as is

@ Berry (1994) suggests a two-step approach: first obtain an estimate of J;;, — call it gjt -
and insert it into the moment conditions above, and second, search for values of o, 3 that
minimize the weighted sum of squares of these moment conditions
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(1) Figure out the values of ;¢

(A) If we normalize do; = 0 and equate the observed shares to the model predicted
shares, then we have J non-linear equations per market — see logit share equation
(57) —in J unknowns

s1t = 81¢(01t, -+ -, 0t)
st = S2¢(01t,- .-, 00t)
(39)
SJjt = gjt((slt, ey 6Jt)
(B) If we can invert this system, we can solve for d1¢, da¢, . . ., d;+ as a function of
observed shares s1¢, 52¢, - . . , Sj¢-
(C) Thus, we now have 0;; = .§j_t1(slt, Sat,...,SJt), J numbers per market which we

can use to carry out step 2 (in the simple logit case, Sjt = In(s;¢) — In(sot))
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(2) With the estimated values of §,;;, use GMM to estimate parameters (in this case, o and 3)
S0 as to minimize (88).

(A) Recall that 6; is the mean utility of product j defined linearly as
0jt = a(—pjt) + %3 + &j¢ for all 7,
01t = a(—pit) + X108 + &1t
02t = a(—p2t) + X2t + &2t

(90)
Syt = a(=pst) +xB+ &gt
(B) We can now use the estimated values of gj to calculate the sample moments
1 m 1 m) T
T2 a6 = 5 D5 (G — xB + apse) oD
j J

minimize these to calculate the values of o, 3
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@ In step (1a) above, we equated observed market shares to model predicted market shares

o In the case of logits, the model predicted market shares take the closed-form (57)
given by 3,0 = exp(d¢)/ [1+ X7, exp(3;0)]

o In other cases, there will be no closed form available to compute the
model-predicted market shares and we will need to resort to numerical simulation
methods to estimate the model-predicted shares

o In fact, these may be functions of additional parameters (call them 62) — thus,
equations (89) will be of the form

sjt = 8¢(01¢y ..., 00t,02) 92)

@ In steps (1b/1c), we ‘inverted’ these equations to solve for /6\jt

o In the case of logit, an analytical solution was available since §;; = In s;+ — In so¢
o More generally, these equations are nonlinear and need to be solved numerically
e Berry/BLP suggest a contraction mapping (and prove that it converges) for d; given
by
81t = 8! + [In(s:) — n(.(6562))] (93)

where s¢(-) is the observed market share, §;(+) is the model predicted market share
at mean utility 8" at iteration h and ||87 — 87|| is below some tolerance level
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@ To sum up, Berry’s (1994) two-step GMM approach with a matrix of instruments Z is as
follows:
(1) Compute Zs\jt
@ Without loss of generality, subsume p;; within x;; as just another column (a special

attribute of product J), and rather than introduce new (unnecessary) notation, redefine
Xjt = [7pjt X jt] — similarly, redefine matrix X to be inclusive of the price vector so

that X = [p X}. Also, let s; be the vector of observed shares and 81 = [a jc4 ]/
o Conveniently, gjt = In(s;¢) — In(so¢) (in the case of simple logit) and
8 = In(s) — In(so)
@ Then¢;:(01) = gjt(st) — X401 —and in matrix notation, £(61) = 5— X601
(2) Define the moment conditions as E(Z'£(61)) = 0
o Next, rglln £(01) ZPZ'£(61) where & = (E[Z'£¢'Z]) !
o In the case of logit, we have an analytical solution — see equation (81) in the GMM
section, and replace y in that equation with 5
0, = (X'Z®Z'X)"1X'ZHZ'S
@ Since we don’t know ®, we start with ® = I or ® = (Z’ Z)_l, get an initial estimate

of 61, use this to get residuals, and then recompute & = (E[Z/££’Z]) ! to get the new
estimates of 61

@ We will use this 2 step approach explicitly in the next model
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@ Let the utility be given by

Unjt = Qn(Yn — Djt) + XjtPBn + &t + €nje, Where

. %94
n=1...,N, 7=0...,J, t=1...,T
@ where
5] o
ﬁn /6 N—
~~ 0,={I1,=
PO (95)
(e Ha Ea
= + d, + Una Vn
B+ e [55] oe ns
@ and where
dn ~Fa(d)  vn~F,(v) (96)

@ note that the person-specific coefficients are equal to the mean value of the parameters 8, = [a ﬁ’] ’
plus deviation from the mean due to a second set of parameters 82 = {II, 3} and given by Ild,, + Xv,,

@ each consumer is assumed to have a fixed set of coefficients {c,, , Bn }

@ we do not impose the restriction that taste parameters { «t, (3} — the marginal utilities of product
characteristics — are the same for all consumers

@ the person-specific coefficients are modeled as a function of underlying common parameters {IT and 3}
that are multiplied to the person-specific characteristics (d,, , V), each of which is random draws from an
underlying mean zero population with distribution functions Fig (d) and F,, (v)
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@ Let mqp and o5 be the terms of IT and X respectively and let (dy, = (din, - .., ds,)") be
the five demographics of the n‘" person recorded as deviation from the population mean

values — then

o =« +mi1din + Ti2dan + ...
+011V1n + 012020 + ...
Bkn = Pr +Tr1din + Trodon + . ..

+0k1Vin + Ok2V2n + ...

+ m15dsn
+ 014V4n
+ Trsdsn

+ OkaVan

@ If there are D person specific observed characteristics (dn, = (din, . .
product characteristics, then ITis a k X D and ¥ is a k X k matrix of parameters, i.e.,

Bn B

5ol ne oo
—~— ~~

“~— ~ kxDbyDx1l kxkbykxl

kx1 kx1

@ suppose there are three observed product characteristics (so k — 1 = 3)
@ five observed person-specific characteristics so that [a B’ 1 "isa4 x 1 vector (the additional dimension

is for price) and d,, isa 5 X 1 vector

o7

.,dpn))andk — 1

(98)

@ v, isalsoa4 X 1 vector — these are the person specific random error terms that provide part of the
’

deviation from the mean values of [« 3']

@ Then ITis 4 X 5 matrix (20 parameters) and X is a 4 X 4 matrix (16 parameters) and so the total number

of parameters affecting the utility function are 4 + 20 + 16 = 40
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@ If we insert (95) back into (94) and simplify, then the utility function can be decomposed
into three parts (or four, if we count o, y,, term, but it drops out later on)

Unjt = OnYn + Ot + tnjt + €njt

where,

8t = 6(Xjt, Pit, §5t5 01) = a(—pjt) + x;¢B + &5

Bnjt = p(Xjt, Djts An, Un; 02) = (—pjt, X;¢) (Ildy + Zwn)

99)

@ Note the following

e except for the yi,,;¢ term, which arises due to multiplication of (Hdn + El/n) with
the observed product characteristics, the rest of the form is the same as in the logit
case

e as before, oy, will drop out of the model, ;¢ is the mean utility of product j and
is common to all consumers

® [injt + €nj¢ 1S the mean-zero heteroscedastic error term that captures the deviation
from the mean utility

e it is this last composite error term iy, j: + €njt, that allows us to break away from the
ITA property
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@ Ultility can be written as

Unjt = CnYn + 0jt + Mnjt + €njt

where,

0jt = 0(Xjt, Djt, Ejt; 01) = a(—pjt) + X8 + &5t

Bnjt = p(Xjt, Pjt, Gn, Vn; 02) = (=pjt, X;j¢) (Tldy, + Ty

99)

@ Recall that in the logit model, the ITA property was arising due to the independence of the
€ITOr terms €yt

@ One way around this problem is to allow these error terms to be correlated across different brands — and in
principle, one can allow a completely unrestricted variance-covariance matrix for the shocks €,, j+ — leads to
the dimensionality problem (all pair-wise covariances between products and variances of each of the J
products)

@ The nested logit took a restricted version of this by imposing some structure on the error terms so that all
products within a group have a correlation between them but not with those in other groups

@ In the current context, we retain the iid extreme value distribution assumption on €y ¢, but
the correlation among the choices is generated via the fi,,;+ component of the composite
€ITOr term [injt + €njt

@ Correlation between the utility of different products is a function of both product and consumer attributes so
that products with similar characteristics will have similar rankings and consumers with similar
demographics will also have similar rankings of products (Lt = (—pjt, X5t ) (Tdy, + Xy ))

@ Rather than estimate a large number of parameters of a completely unrestricted variance-covariance matrix
for e, ¢, we need to estimate relatively fewer parameters 81 = (v, B),0: = {I1,x}
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@ Utility of product j for two different consumers differs only by pin ¢ + €nj: (see (99) —
Unjt = OnYn + 6jt + Mnjt + enjt)
@ the §; term is the same for all consumers and oy, ¥y, is the same for all choices
@ hence the fact that one consumer chooses product j while another chooses product 7 must only be because
the two consumers differ in their product-specific idiosyncratic error terms fin ¢ + €njt
@ Hence, we can describe each consumer as a tuple of demographic and product-specific
shocks (dn, Un, €n0t, €nits - - -, €ngt), which implicity defines the set of individual
attributes that choose product j given by

Ajt(xt, Pt, 0t (Xe, Pe; 01); 02) = {(dnt, Unt, €not, €nits- - -, €ngt) | Unjt > Unit (100)
Vi=0,1,2...J, 1 #j).

@ The market share of product j is the integral of the joint distribution of (d, v, €) over the
mass of individuals in the region Ay,

si= [ P = [ ara@ir Wi (101)
Ajy Ajy
@ where the second part follows only if we assume that the three random variables for a given consumer are
independently distributed

@ note also that set A j; is only defined via the parameters @2 = {IT, 3}, since they were part of the fi,, ;¢
term, and not over the parameters 61
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@ Unlike the logit case, the integral does not have a closed form

@ If we continue to assume that €, ; has iid extreme value distribution, then the probability
that a given individual 7 — with endowed values of d,, and &,,, or equivalently with a
given value of [i,,j; — chooses product j, continues to have a closed logit form like the
equation 5.6 and in this case is given by

exp(d;¢ + fingt)
S0 exp(jt + fingt)

Snjt =

(102)

@ Since pinjt = u(Xjt, pjt, dn, Vn; 02), we can integrate individual probability over the
distribution of d,, and v,, to recover market share of product j

Sjt 2/ snjtdFg(d)dF, (v)
A

Jt

_ exp(¢ + finjt)
_/Ajt{Z‘] ploje + 1t )}dFd(d)dFy(u)

=0 exp(éjt + Mnjt

(103)
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@ Price elasticities of market shares are given by

Sjt

o s[5, ansnie (L= sni)dFa(d)dE W) G =k
ikt Opkt Sjt Bt [\ ansSnjtsSnkidFa(d)dF, (v) otherwise
Sjt gt
where st = oxp(djt +hinjt)

Z;’ZO exp(8¢+iinjt)

@ The main advantage of this model is that estimation requires estimation of a handful of
parameters (rather than the square of the number of parameters), elasticities do not exhibit
the problems noted earlier for the logit (own or cross-elasticities) and allows us to model
consumer heterogeneity rather than rely on a representative consumer

@ Compare to the earlier elasticities from the logit model

(60)

_ BSjt Prt {—Oépjt(]. - Sjt) lfj = k,
Njkt = .

Opkt Sjt Pkt Skt otherwise

@ Nothing comes for free ... now we must integrate the expression numerically
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@ Let z be some arbitrary random variable! with a probability distribution
f(z) =dF(z)/dz — dF(z) = f(x)dx
o then note that the integral — [ z - f(z)dz - is just the expected value of z, i.e.,
Elz] = [z -dF(z)
o the sample analog would be the weighted average of = givenby = > xn Pr(zn)
o further, if all values are equally possible, then it is just the simple sample average
z=(1/N)>, xn

@ The idea carries over to any function g(x) defined over x such that

° Elg(x)] = [g(x)-dF(x)
o and the sample analog would be g(z) = > g(xn)Pr(zns)

@ Thus, if we wanted to numerically evaluate the integral of g(z) with a known distribution
of z (i.e., evaluate [ g(z) - dF(x)), all we need to do is

take lots of draws of « from this known distribution

evaluate g(z) at each of these points

and then just take a simple average of all these values of g(z)

we will get a pretty good value of the integral by this method if we have taken
enough good draws of the random variable x

IThis x has nothing to do with the earlier characteristic vector Xt
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@ Consider the case where z is distributed between 0 and 3 such that the probabilities of
draws are

o Pr(0 <z < 1) = .45,
o Pr(1 <z <2)=.10,and
o Pr2<z<3)=.45

@ If we drew 100 random numbers from this distribution, we would expect about 45 of them
to be between 0 and 1, another 10 observations between 1 and 2, and 45 observations
between 2 and 3

o If that were the case, we could safely evaluate g( ) at each of these 100 random
draws and take their average to compute E[g = [g(z

o If on the other hand, we find that the drawmg sequence (algorlthm) is such that for
the first 100 draws, we have 1/3 of observations from each of the three regions, then
with just 100 draws, average values of g(x) will give a very poor (if not outright
wrong) approximation to the integral in question

@ There is a large literature on drawing from different types of random distributions, for a
good review of basic techniques, see chapter 9 in Train
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@ To compute the integral in (103), we need to know the distribution functions Fg(d) and
F, (v) and draw from these distributions

@ Drawing from Fy(d)

@ note that d,, is the vector of demographics for consumer n (income, family size, age, gender, etc.)

@ one way to proceed is to make use of other data sources, such as the census data, to construct a
non-parametric distribution. We can then take random draws from this distribution to compute the integral
above

@ in practice one can directly draw N number of consumers — where NN is a reasonably large number — from
each of the ¢ markets and record their demographic information

@ thus, let us assume that d,, isa 5 X 1 vector of demographics, and that we have obtained Ns random draws
from each market and recorded the values of these demographics

@ Drawing from F, (v)

@ recall that if x;; is a vector of three observed characteristics (k — 1 = 3) for product j, then for each
person, v, isa4 X 1 (or more generally k >< 1) vector of random error terms that provide part of the
deviation from the mean values of [a B’

@ researchers often specify F, (v) as standard multivariate normal and take N draws per market to obtain v,

@ let us again assume that with the help of a good random number generator, we have taken N4 such draws
per market and have recorded a series of 4 X 1 vectors for each person
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@ Given the values of the parameters @2 = {II, X}, a value of mean utility §;; and N
random values of d,, and v,,, the predicted market share of good j can be computed using
the smooth simulator as the average value of s, ;¢ over the IV, observations,

Sjt = / snjtdFa(d)dF, (v)
A

gt

t + Unjt (105)
NZS"ﬁ:NZ{EeXP jt + fnjt) )}

0 exp Jt + Unjt

where finji = (—pji, Xj¢) (Mdy + Lvy)
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@ Recall from earlier example (5 demographics and 3+1 product characteristics), there were
40 parameters to estimate

@ Data may not allow estimation of such a rich set of parameters

e BLP does not use individual demographics to create variation in person specific
coefficients

e equivalently, the £ x d matrix IT consists of zeros and the variation in [an ,BHI is
only due to Xv),

o Nevo sets only some of the terms of IT to zero and estimates the other coefficients

o Often researchers set 3 as a diagonal matrix and estimate only the leading terms of
this matrix

o this is not as restrictive as it may appear at first pass
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@ To understand the logic of choosing parameters that are set to zero, and the implications,
consider a very simple example where there is only one observed characteristic of each
product, plus price, so that [an ,BHI isjusta 2 X 1 column vector instead of k x 1

@ just to be clear, in what follows in the next couple of paragraphs, think of 3,, and 3 as just 1 X 1 scalars
even though I continue to write them in bold font for vectors

@ Further, suppose that all the elements of IT are zero (again, only to simplify the algebra as the main idea
carries through with or without IT in the utility function)

@ Then sans the Ild,, term

Qn « @ 011 012 [Vin
= Yvn = 106
{ﬁ”} [ﬁ} T L@] + {021 022] L&n} (106)
@ Since v, is a mean zero error term, then

an = o+ 011V1n + O12V2n

Brn = B+ 021V1n + 022V2,

Elan] =a  E[B.] =8 (107)
Var[a,] = 071 Var[v1,] 4+ 2011012C0V[Vin, van] 4 013 Var[ve,)

Var[Bn] = aglVar[yln] + 2021022COV[V1n, Van] + 052Var[1/2n]
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@ Since v, is a mean zero error term, then

ap =a+ 011Vin + O12V2n

Bn = B+ o21v1n + 022V2n

Elan] =a  E[Bn] =8 (107
Var[a,] = 03 Var[vin] 4 2011012C0V[V1n, van] + a5y Var[van,]

Var[Bn] = ngVar[uln] + 2021022CoV[v1n, Van] + o§2Var[y2n]

@ Implications of setting the off-diagonal terms in 3 to zero: if 012 = 021 = 0, then

auy, is a deviation from the mean value of @ and the deviation is determined only by a random shock /1,
multiplied by a coefficient o711

the shock to the marginal utility of the second characteristic v2,,, does not affect the deviation from the
mean for the first characteristics, i.e., the marginal (dis)utility of price

put another way, the unobserved heterogeneity has been modeled such that if the price and speed of a
computer are the only two characteristics in consideration, and a given person gets a positive shock to the
marginal utility of speed (they get more utility from the speed of computer relative to another person), it
does not imply that they also get a higher (dis)utility from the price of the computer due to the higher utility
from speed

the (dis)utility from price is equal to «« plus a person specific deviation only for price 01171y,

similarly, variances of «,, and 3,, depend on the variances of the shocks of these characteristics (e.g.
Var[a, ] = afl Var[v1,,]) but not on the covariance of the shocks, even if Cov[v1y, , van]| # 0, since
012 =021 =0
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@ Next, consider the covariance between a, and 3,,
@ Covariance between the two random variables is defined as

Cov(an,Bn) = E[{an — E(an)}H{Bn — E(Bn)}] hence
Cov(an, Bn) = E(anBr) — af

011021 Var(vin) + 012022 Var(van)

(108)

+

011022C0V(Vin, Van) + 012021Cov(Vin, v2n)

= 011022C0V(V1n, Van).

@ the first line is due to the definition of a covariance and the observation that E[a,,] = « and E[3,,] = 3

@ the second line follows from substituting values of «.,, and 3,, from equation (107), taking the expectations,
setting E[v,,] = 0 and simplifying

@ the last line is if we set 012 = 021 = 0 and shows that even after setting the off-diagonals in 3 equal to
zero, the covariance between the marginal utilities is not necessarily zero — unless we now further assume
that the mean zero error terms v., are not correlated across the characteristics
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@ Common to assume that v,, are drawn from multivariate standard normal or log-normal,
i.e., covariances between the error terms are zero as well
@ In the special case where the terms of IT are also zero — as in the foregoing discussion — this implies that
covariance between marginal utilities will also be zero
@ However, if the terms of IT are not all zero, they will still invoke correlations between the
marginal utilities of different characteristics

@ as equation (97), reproduced below for this special case of two characteristics and five demographics shows

anp =« +midip + mi2den + ...+ T15dsn
+o11V1in + T12V2n
Bn =B +m21din + m22d2n + ... + T25ds5n

+021v1n + 022V2n

(CH)

@ in this case, the covariance between «v,, and 3,, will be invoked via the 7 terms and the covariances
between the demographic variables, even if we set 012 = 021 = 0 and choose the distribution of v/, to be
multivariate standard normal

@ Thus as mentioned earlier, if we use demographic data and don’t set the IT to zero (at
least not all terms) then setting the off diagonals of X to zero and drawing v, from
multivariate standard normal is not so restrictive
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@ The essential idea of estimation remains the same as that of a two-step estimation outlined
in the section on logits

@ Briefly,

e estimate mean utility ¢;+ and then use it in the second step to estimate the moment
functions and find parameters that minimize the value
o this requires first estimating model predicted market shares via (103), equating them
to observed market shares, and then inverting the relation and using a contraction
mapping to compute 9,
@ We consider each of these along the way and following Nevo (2001), combine everything
in a 5-step algorithm
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(-1) For each market ¢, draw N, random values for (v,,, d,,) from the distributions F}, () and
Fa(d)

— the distribution Fg(d) can be estimated using census data
— for F,, (v) we can use zero mean multivariate normal with a pre-specified covariance
matrix

(0) Select arbitrary initial values of ¢;+ and 82 = {II, X} and for 61
— for 0, = [oz ,3']/ use initial values from simple logit estimation

(1) Use random draws and the initial parameter values to estimate the model predicted market
shares 3;; of each product in each market

— use (105) to compute these shares
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(2) Obtain &
(A) Keep 02 = {II, X} fixed and change values of d;; until predicted shares 3;; in step
above, equal the observed shares — this is the inversion step where we want to find
&, such that sj; = §;j;(01¢, . . ., dy¢, B2) in each market
(B) This can be done using the contraction mapping 67 = 87 + [In(s¢) — In(5:))
(C) Note carefully that mean utility is a function of observed market shares and
parameters 02 thus, 0;: = J;+(s¢, 02)
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(3) Define error term as &;¢ = gjt(st, 63) + apji — x;¢0 and calculate the value of the
moment condition, i.e., the GMM objective function

(A)

(B)

(©)

(D)

As before, subsume p;; within x;; as just another column of x;; and redefine
xjt = [—pjt  Xji]; similarly, redefine matrix X to be inclusive of the price vector
sothat X = [-p X]

Thus .fjt((h, 92) = Ajt(St, 02) — thgl.

In matrix notation £ = g(s, 6,) — X6

Then the objective function to be minimized is
(5(91, 92)'2) ® (z'g(el, 02)),

where ® is the GMM weighting matrix

Initially set the weighting matrix as ® = (Z'Z)™!
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(4) Search for better values of 8, = [a ,8'}/ and 8, = {II, ¥} and the GMM weighting
matrix ® that minimize the objective function as follows:

(A) Note that while £(01, 02) is a function of both sets of parameters 8; and 02, it
actually partitions into two components: £;¢+(01,02) = /\jt(St, 02) — x;:01
— this is important because we can help the search algorithm by solving for 81,
conditional on 2 analytically — how? in the GMM objective function given above
[(£'Z)B(Z'€)], set £ = 5(62) — X0
— now consider the first-order condition with respect to 81 and solve for 8;. See
equations 5.31 and 5.32 for FOC and its solution for the GMM estimator
— this implies that if we have some fixed values /gf 02, then 6, can be solved for
analytically as 0; = (X'Z®Z'X) ' X'ZPZ'5(0-)

(B) Thus, first solve (search) for 6, as 6, = (X'Z®Z'X) ' X'ZPZ'5(6-)

(c) Usenew 0, = [a 3] " to re-compute error term £ (see 3b above)

(D) Next, update the weighting matrix ® as ® = (Z'£¢'Z) ™"

(E) Take the new value of ® and update the GMM objective function, (¢'Z)®(Z'¢)

(F) Finally, update 82 = {II, ¥} — do a non-linear search over {II, 3} to minimize the
objective function
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(5) Return to step (1) above with all new shiny parameter values (keep the original draws)
and iterate
— Note that you can skip the updating of the weighting matrix ® in step 4e from now on
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@ Brand Dummies

o In the section on logits, we discussed adding in the brand dummies to the vector x ¢
and recovering the 3 coefficients for the brand characteristics
e The same can be done here as well but will need to have two separate versions of
data matrix X (call them X; and X3)
e Observe that X (defined to be inclusive of the price vector) enters the utility
function twice:
@ in the linear part of the estimation as mean utility §(X; 81) = X6 + £ — this is from
8t = 0(xjt, pjt; &t 01) = a(—pje) +x5e8 + &t
@ and in the non-linear part of the estimation as an individual deviation from the mean
utility pr, (X; 02, dn, vn) = X(IId, + Zvy, ) — this follows from
tnjt = (—pjt, X;¢) (TIdy + Xvy) — and allows for random coefficients on product
characteristics
@ In practice we may not want to allow random coefficients on all characteristics, in which
case the data matrix X appearing in ft,, can be a subset of the one appearing the linear
part &
e Thus, we can write the two components as
8(X1;61) = X101 + £ and,
[l.n(Xz; 0s,d,, IJn) = Xg(Hdn -+ EIJn)
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@ Brand Dummies

e Thus, we can write the two components as
6(X1; 01) = X191 —|— £ and,

[J.n(Xz; 92, dn, l/n) = Xg(Hdn + El/n)

e X includes all variables that are common to all individuals (price, promotional
activities, and brand characteristics or brand dummies instead of brand
characteristics)

e X contains variables that can have random coefficients (price and product
characteristics but not brand dummies) R

o Note that if we use X; and Xo, then the estimator 6, in step 4a/4b above will be
0, = (X1Z®Z'X,) ' X, ZPZ'5(0,)
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@ Additional Instruments

o The instruments matrix Z consists of all exogenous variables

o If the brand characteristics (excluding price) are exogenous, then the brand
characteristics plus the instrument(s) for the price variable consist of the matrix Z,
or alternatively, if we use brand dummies, then the brand dummies and the price
instrument(s) form the matrix Z

e However, note that if we have only one additional instrument for price, it will not be
enough for the identification of the model parameters

The brand characteristics (or brand dummies) plus the one additional instrument for
price will give exactly as many moment conditions as the number of components of the
parameter vector 61

These would be enough in the linear logit case

However, in the random coefficients case, we have to estimate additional k X D + k x k
parameters of 2 = {II, X}

This is not possible unless we have an additional £ x D 4 k£ X k moment conditions

In practice, researchers often set some of the terms of the IT matrix to zero and also set
the parameter matrix 3 to be diagonal (see earlier discussions)

This reduces the need for additional moment conditions from kD + k2 to g + k where g
is the number of non-zero terms in IT
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@ Additional Instruments

o These may be relatively easier to overcome (these instruments should also not be
nearly collinear else will give rise to redundant moment conditions)

o If one is using BLP-style instruments for price (and product characteristics are
exogenous) then recall that, in general, one gets more than one instrument for price
by using sums of the values of characteristics of other products offered by a firm, and
the sums of the values of the same characteristics of products offered by other firms

o Alternatively, if using Hausman-style instruments, the price of the product from
more than one market needs to be used (for instance, Nevo (2001) uses data from 20
quarters and multiple cities and constructs 20 additional instruments from other
cities matching one from each quarter)

e An additional set of instruments could be the average value (average over n
individuals) of the product characteristics interacted with the person-specific
demographics to account for the parameters in the IT matrix and similarly the
average value of the person specific shocks v interacted with product characteristics
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@ Separability

o The main method we will look at in the products space approach is one which solves
the dimensionality problem by dividing the products into small sub-groups and then
allow some relatively flexible substitution patterns between the products within a
group

o Useful if we could break down the overall consumer decision problem into separate
parts, some of which could be estimated separately

o This is the issue of separability

e What assumptions do we need on an individual consumer’s utility function to treat
and analyze demand for some products separately from the demand for other
products?
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@ Aggregation

o A related problem is that of aggregation, which considers the relationship between
individual consumers’ behavior and aggregate consumer behavior (which is the sum
of individual behavior over all individuals)

o When working with aggregate data, one can ask whether there are assumptions on
preferences such that aggregate demand is generated by a “representative consumer”
with “rationalizable” preferences

o There is no reason why aggregate data, or any data that is an average over many
people should conform to a theory of consumer behavior that focuses on individual
people or households
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@ Preferences (>)are homothetic if tq; > tqs < q1 >~ qo forany ¢t > 0

the consumer is indifferent between bundles ¢q; and tq> whenever they are
indifferent between bundles q; and q2

there is only one indifference curve and any indifference curve is a radial blowup of
another and all indifference sets are related by proportional expansion along rays
marginal rates of substitution are unaffected by equal proportional changes in all
quantities, so that income expansion paths are straight lines through the origin
preferences are homothetic if and only if they are of the form

u(q) = F(f(q)) where f(tq) = tf(q), (109)

and F'(-) is a monotone increasing function

the utility function must admit a function that is homogenous of degree one (the
f(+)) and since utility functions are only defined up to monotonic transformations,
then we may as well write the utility function to be just u(q) = f(q) where the
latter is, as before, homogeneous of degree one
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@ Consider the consumer’s expenditure minimization problem
minp - qs.t. u(q) = f(q) = u.

e Since the function is homogenous of degree one, doubling q will double the target
utility, but doubling g means doubling the expenditure

o This means that if e(p, u) = q* - p is the minimum expenditure for target utility w,
then for a target utility of tu, the minimum expenditure is
e(p,tu) =tq" - p = te(p,u)

e Now if the initial target utility is equal to 1, then by letting ¢ = u, we can write
e(p,u) = ue(p, 1) and hence, for homothetic utility preferences, the expenditure
function is of the form

e(p,u) = ub(p), (110

where b(p) is some linearly homogenous and concave function of prices
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@ Consider the consumer’s expenditure minimization problem
minp - qs.t. u(q) = f(q) = u.

e Since the function is homogenous of degree one, doubling q will double the target
utility, but doubling g means doubling the expenditure

o This means that if e(p, u) = q* - p is the minimum expenditure for target utility w,
then for a target utility of tu, the minimum expenditure is
e(p,tu) =tq" - p = te(p,u)

e Now if the initial target utility is equal to 1, then by letting ¢ = u, we can write
e(p,u) = ue(p, 1) and hence, for homothetic utility preferences, the expenditure

function is of the form
e(p,u) = ub(p), (110)
where b(p) is some linearly homogenous and concave function of prices
o This implies the following forms for indirect utility, Hicksian and Marshallian
demand curves (V(p, y), h(p, u) and ¢(p, y) respectively)
Vi = e =u P gy = yam)
(p) Ip; (1)
where y = z p;q; is the total expenditure

J
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@ Example: cobb-douglas utility function given by u(q) = ¢-* g5 .. ., q?“’ where the
associated demand functions are of the form

y~ D
Pi Y7 B

q; =

@ Implications for demand estimation
e demand for each good is proportional to expenditure (income), or alternatively, the
Engel curve for each good is a straight line going through the origin
o expenditure elasticity of good j is always one

__Olng; .
mialnyil Vi=1,...,J.

o known as the expenditure proportionality, which is equivalent to the requirement
that budget shares (w; = pquj ) of all commodities are independent of the level of
total expenditure (income) so that a consumer always spends a constant proportion
of their income on a product, even though income may be varying across different
consumers

e all expenditure elasticities are equal to one — a result that is contradicted by most
empirical studies

e demand for each good is independent of prices of other products implying that
cross-price elasticities are zero
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A less restrictive form is that of quasi-homotheticity

In this formulation, a fixed expenditure element (a(p)) is added to the expenditure
function in equation (110) so that it is now given by

e(p,u) = a(p) + ub(p) (112

This form is called the Gorman Polar Form

The term a(p) represents the subsistence level of expenditure when u = 0 and b(p) is the
marginal cost of utility

The associated indirect utility and demand functions (per the usual derivations) take the
forms

_y—a(p) _ o b (p)
V(p,y) = ) and 4;(p,y) = a;(p) + b(p) [y - a(p)] )
_ 0Oa(p) _ 9b(p)

where a;(p) =

and b;(p)

Op; Op;

a(p) is interpreted as the subsistence spending amount and b(p) is a price index that
deflates income/expenditure over and above the subsistence level

17417215



GORMAN FORM & AGGREGATION ;%. Loughborough

QUASI-HOMOTHECITY AND GORMAN POLAR FORM p University

@ Some authors write it in an alternative form
o we can define A(p) = b( 5 and B(p) = 7a(p))
o and define a;(p) = a;(p) + b;(P)B(p) = a;(p) — B;(p)a(p) and
8(p) = b; (P) A(p) = %2
@ Then (112) and (113) can be expressed as

e(p,u) = a(p) + ub(p)
V(p,y) = A(p)y + B(p)
4;(p,y) = o;(P) + B (P)y

! B a(p) (114)
where, A(p) = ) B(p) =- b(p)
and. s (p) = Z5 2 — B (pa(p) 5y(p) = s

Op;
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@ The budget share equations in this case are given by a weighted average of two terms

wy = (2) 220y 4 (1= 2) (), (115)

a

@ Implications

e if a = y (subsistence level is equal to the entire income) the budget share of good j
is equal to just %, and if expenditure is much larger than the subsistence level (so
a/y = 0) then the share is given by 2 jbbj

o In aggregate, the expenditure patterns are a weighted average of value shares
appropriate to very rich and very poor consumers

o Engle curves are still linear but they do not go through the origin anymore

o although homotheticity implies unitary income elasticities for all commodities,
quasi-homotheticity implies elasticities that only tend to unity as total expenditure
increases

e significant generalization/improvement over the previous case, but still restrictive as
it is unlikely to be true for narrowly defined commodities

e even for broad commodities such as food, household budget studies tend to give
nonlinear Engel curves (we will get to that further below)

176/215



GORMAN FORM & AGGREGATION ;%. Loughborough

QUASI-HOMOTHECITY AND GORMAN POLAR FORM p University

@ Example: Stone-Geary utility/linear expenditure system (LES) — u(q) = H;(qj — ;)P
or equivalently as u(q) = ZJJ B; In(q; — o) with ZJJ B =1

e implied expenditure, indirect utility and demand functions are

J T s y— 3] piay
u):ijaj +UHij, V(pw): H‘] 57 )
i j
J
Y= 225 Piy
Dj

and  qi(p,y) = + 55

e expenditure on good j is

piq; = picy + B5(y Zp]a]

and is called the linear expenditure system (LES) (expenditure is linear in prices
and income) which is easy to estimate, and has been very popular in empirical
studies for this reason
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@ Example: Stone-Geary utility/linear expenditure system (LES) —u(q) = H;(qj — )P
or equivalently as u(q) = E;] BiIn(g; — a;) with E;] Bi=1
@ expenditure on good j is

J
Pig; =Py + Bi(y — Y pijay)
i

and is called the linear expenditure system (LES) (expenditure is linear in prices and
income) which is easy to estimate, and has been very popular in empirical studies for this
reason
e characterized by the marginal budget share and subsistence level parameters,
requiring estimation of 2.J parameters
o compare that to the more general case of estimating J> + .J parameters (own and
cross-price elasticities and income/expenditure elasticities), or, if adding up,
homogeneity, and symmetry restrictions are imposed, there are (2J — 1)(J/2 + 1)
parameters to be estimated
o nonetheless, if concavity of the expenditure function is allowed, then by
construction, all cross-price elasticities are positive and hence the system cannot be
used if some of the products are complements
o also there is an approximate proportionality between own-price and expenditure

elasticities
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@ Aggregate demand data raises the problem as to whether the aggregate demand function is
consistent with consumer theory

@ Certain conditions are necessary under which we can treat the aggregate demand
estimations as resulting from the behavior of a single utility maximizing consumer (exact
aggregation)

@ As you can guess by now, they have to do with quasi-homotheticity and Gorman Polar
Form
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@ Suppose there are N consumers (or households) that face the same prices but differ only in the incomes or
expenditures on different products so that the demand for good j for the n'™ individual is of form

Qjn = Gin(Ps Yn)- (116)

Then the average demand g; — aggregated by adding up quantities over all individuals and dividing by N —is given
by some function f; as

N
1
G = 1Py vz, yN) = = D in(P,yn) a1

exact aggregation is possible if we can write (117) in the form
1N
aj = 9;(p,7) where g = — > “yn (118)

@ An implication is that the general function in (116) must be linear in yy,, that is, for some function «;,, and 3; of
p alone, be of form
4jn(PyYn) = @jn(P) + B (P)Yn (119)

@ Thus, if the aggregate (average) demand is a function of prices and average income, as in (118), then the underlying
individual demand must be of the form given by (119)

@ But this is the same demand function from quasi-homothetic preferences as in (114) with a subscript n for the nth

consumer, and «¢; and y both vary over consumers, but importantly, 3; does not vary over consumers (i.e,
person-specific c(p) but identical 8(p))
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@ Conversely, if the n'" consumer has quasi-homothetic preferences with demand given by
(119), then the average demand — aggregated via adding up quantities over all individuals
and dividing by N —is

1 N
G = 5 D Gin(Pyn)

a;(p) + B;j(p)y, where (120)
1 Y 1 X
N > " ajn(p), andy = N >

@ Thus, for exact linear aggregation, underlying individual demand must be from
quasi-homothetic preferences and if the consumer has a demand corresponding to
quasi-homothetic preferences, then aggregate demand must be of a similar form

a;(p)

@ (119) is necessary and sufficient for (118)

@ Note that the forms above are arising only due to aggregation requirements, and have
nothing to do with requiring aggregate utility maximization
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Suppose now that individuals maximize utility and the individuals demand function is of
form (119)

Gorman showed that the quasi-homothetic demand of the form above is generated by a
consumer with the expenditure function given by

en (P, un) = an(p) + unb(p), 121)

i.e., expenditure is of (Gorman) polar form with subscript n in the equation (114)
Deaton and Muellbaur show that it is a ‘if and only if” condition

Similarly, the average of the expenditure functions in (121) is

é(p,un) = a(p) + ub(p), (122)

and corresponds to the expenditure function for the average demand function in (120)

If individuals maximize utility, and preferences are such that they satisfy the exact
aggregation condition, then the average demand function will be consistent with utility
maximization

Moral of the story ... if we want exact aggregation and want to think of the aggregate
demand as arising from a utility maximization of a aggregate consumer, then we have to
work with quasi-homothetic utility functions
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o Aggregation given earlier leads to the linear Engel curves.

@ Muellbauer (1975,1976) introduced exact nonlinear aggregation by starting with
budget shares rather than with quantities, so that aggregation is over the budget
shares of different consumers

@ For n consumers, the average budget share of good j is given by

;= IW -y (Zy"yn)wjn. (123)

defined as a weighted average of individual shares w;, with weights given by the
share of each individual in total expenditure on good j.

n

o Turns out that such a representative consumer (and the assumed cost function)
exists only if the preferences are such that the expenditure function of each
individual has the form (called Generalized Gorman Polar Form)

en (P, un) = On(un, a(p),b(p)) + ¢n(p) (126)

where a(p), b(p) and ¢(p) are homogenous of degree 1 in prices, 8,,( ) is
homogenous in a(p) and b(p) and, ), ¢, (p) =0
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@ Deaton and Muellbauer consider a special case, in which the representative consumer’s
expenditure level (income) yo is assumed to depend on the distribution of individual
expenditures (incomes), y1, . . . , Y» but not on prices, which leads to particularly useful
class of demand equations

@ For a representative consumer the expenditure function takes the form

e(p,uo) = [a(p)*(1 — uo) + b(p)“uo]"/* (132)

and the corresponding budget share equations are said to have the price independent
generalized linear form (PIGL).

@ As a — 0, the representative expenditure function becomes
In(e(p, uo)) = (1 = uo) In(a(p)) + uo In(b(p)) (133)

@ These give the nonlinear Engel curves as

" {w +n;(y/k) ™ PIGL

P (134)
~i + 1} In(y/k) PIGLOG

where ~’s and 7)’s are functions of prices only, k varies over individuals (or households)
and can be used to capture demographic effects
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@ PIGL/PIGLOG family generates exact nonlinear aggregation over individuals or households with nonlinear Engel
curves

@ Merits of representation of market demand as if they were the outcome of decisions by a rational representative
consumer has made for extensive application of this class of models

@ A specific application comes from a second-order Taylor series expansion of equation (133) so that the first and
second derivatives of the expenditure function with respect to prices and utility can be set equal to those of any
arbitrary expenditure function at any point (a flexible functional form)

@ Deaton and Muellbauer suggest functional forms for a(p) and b(p) in (133) which result in a flexible system they
call the ‘almost ideal demand system’, where

1 .
Ina(p) = ap +Zo¢j Inp; + 522%% Inp; In pg
J ik

5. (135)
Inb(p) = Ina(p) + Bo [ [ »;’
J
@ AIDS expenditure function is given by
1 * B
Ine(p,u) = ap + Z ajlnp; + 5 Z Z'ij Inp; Inpr + uBo Hpjj (136)
J ik J

@ The expenditure function will be linearly homogenous in p as long as

Ejajzlvzj’YI:j:Zk’YZj:ZjBJZO
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@ AIDS demand functions in budget share form are

w; = o + Z’ij Inpy + B In(y/P)
k

where P is a price index defined by 27
1
InP = ap + Zk:ak Inpr + 5 sz:’ym In px Inp;

where ;i = 5 (V) + i)
@ The restrictions on the parameter of the cost function impose restriction on the parameters
of the AIDS demand system (27) given by

J J J
D=1 Y =0 Y B;=0
j=1 j=1 j=1

D=0 v =
k

(137)

@ Provided the restrictions above hold (or are imposed), (27) represents a system of demand
functions which add up to total expenditure (> w; = 1), are homogeneous of degree
zero in prices and total expenditure taken together, and satisfy Slutsky symmetry and give

nonlinear Engle curves.
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Related but distinct

@ Separability refers to the case when a consumer’s preferences for products of one group
are independent of product-specific consumption of products from other groups

@ Multi-stage budgeting (MS budgeting) refers to when a consumer (or household) can
allocate their total expenditure on different goods in sequential stages, represented as a
utility tree, where in the first stage, the total current expenditure is allocated to broad
groups of products (food, housing, entertainment) followed by the allocation of
expenditures within each broad group (e.g., meats, vegetables, etc. within the food group)
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@ Separability Preferences for products of one group are independent of product-specific
consumption of products from other groups

@ Thus,
u(q17 RN} QJ) = f[vl(q(l))7 s 7vk(q(k))7 .. UK(Q(K))L (138)
where (q1,...,¢5) = (1), d(2); - - - dx)) 1.e., the set {q;) } is a partition of
(g1, -.,q;) and there are K < J partitions and f(-) is an increasing function of
sub-utility functions vy, . .., vi defined over the partitions

@ The groups could be broad categories such as food, shelter, etc. or within a class of
related products, it could be subgroups such as the type of food (meat, vegetables, etc.)

@ This does not remove the dimensionality problem but does lessen it. For example, for a
linear demand system, the total number of parameters reduces from J> + .J (additional J
parameters are for income) to J? /K + K? number of parameters (for J = 20 products
and K = 10 subgroups, we go from a total of 420 parameters to 140 parameters)
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@ The implied subgroup demand functions — conditional demand functions — for all products j in group G are of the
form
q; = 9(Yg, Pg)s (139)
where yg = > ieq Pigi is the total expenditure on products in group G and pg is the vector of prices of these
products
@ Note that they do not include the prices of products not in Group G

@ Lets;; = 8q£‘/8pj be the terms of the Slutsky matrix (i.e., partials of the Hicksian demand function with respect
to prices), then for any two product s € G and j € H where H # G,

Sij = MGH Oa: 6& = AGH Og: qu
’ oy oy dyg Oyn (140)
Oyg Oyn
where A\q g = ,uGHa—ya—y

@ 1 m summarizes the interrelation between groups
@ M\ g is the compensated derivative of expenditure on group G with respect to a proportional change in all prices in

roup H (i.e., A\GH = D .cp Pj 72
group ZJEH J 81)] u=const

@ If there are K total groups, then we can write a K x K matrix from the \’s that is interpretable as the Slutsky
substitution matrix of the group aggregates

@ Weak separability results in a two-tier structure of substitution matrices: there are K completely general intragroup
Slutsky matrices with no restrictions on substitutions within each group, but between groups substitution is limited
by (140)
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WEAK VS STRONG SEPARABILITY 7 University

@ When the marginal rate of substitution between any two goods belonging to the same
group is independent of the consumption of goods within the other groups, it is consider
as weak separability of preferences

@ If the marginal rate of substitution between any two goods belonging to two different
groups is independent of the consumption of any good in any third group, this separability
is called strong separability or block additivity."

@ Strong form is when
uw(qi, -5 q5) = floi(qay) + - +velagy) +- - v (a)]s (141)
and f'(-) > 0. In turn, the equivalent form of (140) is given by

- 94i 0qy
S”_’“‘am ox

where note that p is independent of groups to which ¢ and j belong

(142)

Note that some authors refer to this form as just ‘additive’ separability (without the use of the word

block), but technically that is the case when there is only one good in each group.
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MULTI-STAGE BUDGETING  University

@ Multi-stage Budgeting: Consumers can allocate total expenditures in stages, starting
with the top-level group and then to any subgroups or sub-subgroups within them

@ At each stage, information appropriate for that stage only is required, i.e., the allocation
decision is a function of only that group’s total expenditure and price indexes for the
subgroups and not of prices or price indexes of products in the other groups

@ If the first stage consists of broad categories (food, housing, entertainment) then the consumer decides how
much of the budget to allocate to each of these categories depending on three price indexes and not
individual prices of types of food items etc

@ Within the food category, the consumer decides how much to spend on different food items (or subgroups)
based on the total amount allocated for food and prices of individual food items (or price indexes if there are
further subgroups with the food group)

@ Similarly, allocations are done within other groups (housing, entertainment)

@ The process repeats at a third level if there are subgroups (for instance, within the foods group, there may be
subgroups of meat, vegetables, etc., and then within any of these subgroups, there are individual items)

@ Thus the consumer can allocate the expenditures to the subgroups in sequential stages

@ However, all these sequential allocations must equal those that would occur if the
consumer’s utility maximization problem was done in one complete information step
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MULTI-STAGE BUDGETING  University

@ Because expenditure allocation to any good within a group can be written as a function
only of the total group expenditure and the prices of goods within that group, the demand
for any good belonging to the group must also be expressed as a function only of total
expenditures on the group and the prices of goods within the group

@ Thus

u(q17 <o dm,quyQqd, - - - 7qj) = f[vl(q(l))7 ceey UF(qm7 Q’Uqu)7 cee 7UK(C[(K)” (]43)
implies
4 = 9(yr,pm,pv,pa)  j € {m,v,d} (144)
where yr is the total expenditure on the food items

@ In fact, the converse is also true: the existence of subgroup demand functions implies
weak separability
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LINKS w7 University

@ Weak separability and multi-stage budgeting are closely related concepts but are not the
same nor does one imply the other

@ Weak separability is necessary and sufficient for the last stage of multi-stage budgeting

@ While weak separability is necessary and sufficient for the last stage of multi-stage
budgeting, and one can proceed with group-specific demand functions at the bottom level
(as above)

@ Allocation of total budget to different groups at higher stages requires further restrictions
on preferences, or on stronger notions of separability and on composite commodity
theorem

@ To be able to do upper-level allocation, there must be an aggregate quantity and price
index for each group which can be calculated without knowing the choices within the
group

@ A useful set of requirements is that (1) the overall utility is separably additive in the

sub-utilities, and that (2) the indirect utility functions for each group are of the
generalized Gorman polar form
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MERGER SIMULATION *‘=. Loughborough

Appendix — Merger Simulation

(1) How to back out marginal costs

(2) Compute new prices under a merger
(3) Allow cost efficiency for merging firms
(4) Example with Linear demand
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MERGER SIMULATION - DEMAND MODELS 7 University

@ Commonly used demand systems

Linear/Log-linear

Almost Ideal Demand System (AIDS)
Logit/Nested Logit

Random Coefficients Logit

@ Pros and cons — models differ in flexibility for own- and cross-price elasticities,
requirements on data, and difficulty of estimation

e Linear and AIDS - flexible and can give negative cross-elasticities (complements),
but difficult to estimate if too many products (the ‘dimensionality curse’)

e Logit — easy to estimate, suffers from the ‘independence of irrelevant alternatives’
(ITA) problem, and if shares are small, own elasticity is proportional to price

e Random coefficients and its variants difficult to estimate under strict time restrictions

@ Endogeneity — models must account for simultaneity of price and quantity
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MODELS OF COMPETITION 7 University

Models of Competition
@ What are the strategic variables?

e Prices, quantities, quality, advertising

@ How do firms set their values?
e Cooperatively or non-cooperatively
e Simultaneously or sequentially

@ What is the equilibrium concept?

o Typically Nash equilibrium

@ We will focus on differentiated products Bertrand competition where

e Firms move simultaneously to set prices
o Outcome is via Bertrand-Nash equilibrium

196/215



MERGER SIMULATION *‘=. Loughborough

OBTAINING COSTS 7 University

@ Costs can be obtained from independent sources (e.g. firms accounts, industry reports)

@ Can also be backed out from demand model when combined with a model of competition
such as Bertrand-Nash equilibrium

@ Intuition from a monopolist’s problem ...

mgqu(p) —TC(q(p))

where FOC’s give

@ The equation can be rewritten as price is equal to marginal cost plus a markup

1

P= Gatpyop 1P
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SUPPLY SIDE — MULTIPRODUCT/OLIGOPOLY 7 University

@ Let there be J differentiated products and F’ firms and where the f-th firm produces a
subset §s of the J products

@ Let the demand for the j-th product be given by
4 = 4;(p)

where p is a vector of all related prices (could be any of the demand functions we
discussed earlier)
@ The the f-th firm maximizes its joint profit over products that it produces

Oy = (px — cx)ax(p)

kEF ¢

where ¢y, is the marginal cost of the k-th product, typically assumed constant over the
relevant range, and the sum is over all the products owned by firm f
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SUPPLY SIDE EQUATIONS 7 University

@ For firm f, the first order conditions for profit maximization (Nash-Bertand competition)
are

Oqx(p)
Op;

() + > (e —cx)

kEF ¢

=0 forall j € §¢

@ Let © be a 1/0 joint “ownership” so that terms 6;;, (row j column k) equal 1 if products j
and k belong to the same firm and O otherwise (and 1 on the leading diagonal)

@ Then we can re-write the FOC equations above for each firm f as

J
9] .
(IJ(P)'FZ@jk(pk—Ck)%:O forall j € 3y
k=1 J

which will give us a total of J such equations
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SUPPLY SIDE EQUATIONS 7 University

@ Example: firm 1 owns products 1,2, firm 2 owns products 3,4 and firms 3 and 4 own
products 5 and 6 respectively

aql 8q6
0 —ca)— 0 —
g1+ 011(p1 —c1) o +...+061(p6s — c6) 5 o
0 0
g2 + 012(p1 — 01)87;;-1- .+ 862(ps — 06)822
0 0
g6 + 016(p1 — CI)TZ;JF .+ Os6(ps — Ce)aTzz =
where note that only those terms survive where 6 7# 0
Rewrite in matrix notation as
0
q—Q2p-¢)=0 where Qi = =01 a:(p)
Op;
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SUPPLY SIDE EQUATIONS 7 University

@ Equivalently, given a demand system ¢; = D, (p), if the matrix of slope coefficients

9q; (p)

B, (row j column k) is given by B, then

Q=-0-B

(note: the symbol - is element by element multiplication and not the usual matrix
multiplication)

@ The quantity equation above can be rewritten as the price markup equation

p=c+Q2 'q(p)
(compare this to the monopolist’s equation on slide 197 — same/similar)

@ This price equation, along with a demand system equations ¢; = D;(p) jointly
determines equilibrium prices and quantities and are at the heart of merger simulation
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SUPPLY SIDE EQUATIONS 7 University

@ Given estimates of demand functions, information about ownership, and
observed prices and quantities, we can back out markups and marginal costs

p=c+Q 'q(p)
=

c=p-Q 'q(p)

@ For merger simulations we change the ownership matrix ® and re-solve for
prices using the equations p = ¢ + 27 'q(p) and ¢; = D, (p)
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ALGORITHM w7 University

@ Step Oa: Estimate the demand system ¢; = D;(p) and obtain B the matrix of slope

coefficients (or use previous studies); i.e. Bjr = a‘é; (kp)
@ Step Ob: Construct 2o = —@ - B’ using pre-merger ownership matrix ¢

@ Step 1: Given data on price and quantity back out estimates of marginal cost
€ = po — 25 "qo(po) (unless available from outside)

@ Step 2: Construct the new ownership matrix &4
(optionally, adjust mc of merging parties as necessary)

@ Step 3: Compute the new equilibrium price p3 using the equation p; = € + Ql_lq(p’{)
o If the demand system is linear we get a closed form solution for price and quantity
e If not linear, will need to search for new price equilibrium using numerical methods

e Given type of demand model, can iteratively search for p7 such that
Ip" ) — p™| < € and where
p"*V =+ a7 (p™)a(p™)
and h is the iteration loop
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KEY ISSUES » University

@ Data requirements can be high

e Sales data including product characteristics, cost data and/or data on inputs that
affect cost (additional supply side estimation)
o Expertise in demand estimation

@ Sensibility and sensitivity checks

e Do elasticities, margins, marginal costs seem reasonable? Do they match some
known outside information?

e How much do they change with demand specification?

e Do the assumptions made for the model make sense?

@ Proceed with caution

o They can provide reasonable predictions but require great care
o Predictions are sensitive to modelling assumptions
o Perhaps use it as internal screen that complements other qualitative work
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@ Suppose demand functions are linear, and the demand for jth product is given by

J
g5 = a; + Z bjkp;
k=1
and marginal cost for each product is mc;

@ We can write the demand equation in matrix notation as

q=a+Bp

where for instance vector a and matrix B are given by

al b11 blk
a= [a; B = bjl bjk

a.gj bJ1 e ka

brs
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LINEAR DEMAND EXAMPLE p University

@ Suppose there are 6 independent firms and 6 products
e Demand functions are linear and previously estimated to be
5

3 =10-2p; +03) g
k]

o In a typical market, say price and quantity are observed to be 4.8 and 7.6
respectively for all the products
o p' = (4.8,4.8,4.8,4.8,4.8,4.8) andq’ = (7.6,7.6,7.6,7.6,7.6,7.6)
@ Using the equations above we can back out the marginal cost and compute markups and
price-cost margins

-2 3 3 3 3 3 10 0 0 0 O

3 -2 3 3 3 3 01 0 0 0 O
33 -2 3 3 3 |0 01 0 0 O
B = 3 3 3 -2 3 3 ®= 00 0 1 0 O
3 3 3 3 -2 3 00 0 0 1 0

3 3 3 3 3 -2 0 0 0 0 0 1
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LINEAR DEMAND EXAMPLE p University

@ Let a be column vector of intercept terms (all equal to 10 in this example), so
a’ = (10,10, 10, 10,10, 10)

@ Then fromp = ¢ + Q *q(p) and Q@ = —O - B/, it follows that estimated marginal cost
C can be computed as

c=p - Q' a(p)

1 4.8 2 0 0 0 0 0] '[76 1
ca 4.8 002 0000 7.6 1
cs| |48 002000 76| |1
cal |48 |0 0 0 2 0 O 76| — |1
cs 4.8 0000 20 7.6 1
co 4.8 0000 0 2 7.6 1

@ Thus we have backed out the marginal costs (all equal to 1 in this example) with price
cost margins being 100(4.8-1)/4.8 = 79.16% for each product
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LINEAR DEMAND EXAMPLE p University

@ Equipped with marginal costs and demand parameters, we can now simulate new
equilibrium prices and quantities

@ For the moment, let’s continue with our linear demand system

@ We start by determining/solving for Nash-equilibrium given the set of J demand
equations q = a + Bp and the set of .J price equations p = ¢ + Q' q(p) derived from
the first order conditions specific to this linear demand system
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LINEAR DEMAND EXAMPLE

@ The set of 2J equations g = a + Bp and p = ¢ + 2~ *q(p) jointly determine
equilibrium price and quantity vectors in any market

e Write the 2 matrix form equations as
gq=a+Bp and q=0©-B'(p-¢)
o They can be stacked with the endogenous variables p,q on the LHS as
S R A
-B I| |q 0 I|]|a

where I are 0 are J X J identity and zero matrices respectively, and hence

[ [ L

» University
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LINEAR DEMAND EXAMPLE p University

@ The set of equations

p| [©-B) 1] '[(©-B) 0]]c

q| -B I 0 I||a
can be easily solved using any matrix based software (Matlab, R, Mathematica, SAS,
STAT, etc. ... and can even be programmed in Excel)

@ Thus given the demand parameters of a linear demand system, marginal costs and the
ownership matrix, we get a unique Nash equilibrium solution in prices and quantities

e Let ® and B be as specified for the linear demand system for six products owned by
six separate firms, and let ¢’ = (1,1,1,1,1,1)

o Then
4.8 7.6
4.8 7.6
. |48 . |76
P =148 4 =176
4.8 7.6

4.8 7.6
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@ Suppose firms 1 and 2 merge, firms 3 and 4 merge and firms 5 and 6 merge — then all we
need to do is change the owenership matrix ® to reflect the new post merger ownership
and resolve the system of equations using the new ownership matrix

@ Let the pre merger and post merger ownership matrices be given by ®¢ and @;
respectively (i.e., for time 0 and 1)

(=N oNeloNol

[N eNeBell -]

oo~ OO

ook O 0O

@ Now solve for p and q using @,

|

p
q

-

0 0
0 0
0 0
0 0
1 0
0 1
(©:-B)
—-B

OO OO =
oo O~ M
OO R~k OO
oo R, R, OO
= -0 o0 oo
—_—_ 0000
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LINEAR DEMAND EXAMPLE p University

@ Suppose firms 1 and 2 merge, firms 3 and 4 merge and firms 5 and 6 merge

@ The old and new equilibria are as follows

Pre-merger values Post-merger values

Product p q (@op « P q (MGop = % Ap

1 48 7.6 792% 28.88 532 734 812% 31.70 10.80%
48 7.6 792% 28.88 532 7.34 812% 31.70 10.80%
48 7.6 792% 2888 532 734 812% 31.70 10.80%
48 7.6 792% 28.88 532 734 812% 31.70 10.80%
48 7.6 792% 28.88 532 734 812% 31.70 10.80%
48 7.6 792% 2888 532 734 812% 31.70 10.80%

(o) NNV IS S US I ]

@ Overall prices increase by 10.8% for each product and total output falls, which would
reduce consumer surplus

@ What if there was an efficiency defence — say 25% reduction in costs?
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LINEAR DEMAND EXAMPLE p University

@ Suppose there is a merger specific efficiency defence — that marginal costs would reduce
by 25% — then in addition to changing the ownership matrix, we can multiply mc by 0.75
and resolve

@ Let the pre merger and post merger ownership matrices be given by ®¢ and @;
respectively (i.e., for time 0 and 1)

[e= RN en BN e Bl en el
cocooo O
oo o~ OO
oSO = O OO
o~ OO0 OO
—o oo oo
OO OO =
oo O~ M
OO R~k OO
oo R, R, OO
= -0 o0 oo
—_—_ 0000

@ Now solve for p and q using @,

m _ [(Gl_-BB’) ﬂl {(OldB’) (I)] {0.75@]

213/215



MERGER SIMULATION

LINEAR DEMAND EXAMPLE

reduce by 25% due to mergers

@ The the old and new equilibria are as follows

3
‘=? University

@ Suppose firms 1 and 2 merge, firms 3 and 4 merge and firms 5 and 6 merge and costs

Loughborough

Product
1

(o)W, I ENROS I 9]

Pre-merger values

Post-merger values

p q (pop p q (@op
48 7.6 792% 28.88 513 7.44 85.4% 32.54
48 7.6 792% 28.88 513 7.44 854% 32.54
48 7.6 792% 2888 513 7.44 85.4% 32.54
48 7.6 792% 28.88 513 7.44 85.4% 32.54
48 7.6 792% 28.88 513 7.44 854% 32.54
48 7.6 792% 2888 513 7.44 85.4% 32.54

% Ap
6.77%
6.77%
6.77%
6.77%
6.77%
6.77%

@ Overall prices still increase by 6.77% and output is reduced so merger does not improve

consumer surplus

@ Can also compute change in total profits and compare to the change in total CS for

welfare criteria
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LINEAR DEMAND EXAMPLE - SUMMARY 7 University

@ Thus, we can modify the ownership matrix and/or the vector of estimated (or known)
marginal costs to simulate unilateral effects

@ In the previous analysis, the demand curves were linear and hence the solutions, the
Nash-Bertrand equilibrium, was easy to compute no matter how large the system of

equations (dictated by J)

@ More generally, the most appropriate demand system may not be linear but the overall
process stays the same
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