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READINGS
MAIN SOURCES

Readings: There is no single text for this workshop. These lecture notes draw heavily
from several sources. The primary ones are listed below.

Berry, S. T. (1994). Estimating discrete-choice models of product differentiation.
RAND Journal of Economics, 25(2):242–262.

Berry, S., Levinsohn, J., and Pakes, A. (1995). Automobile prices in market
equilibrium.
Econometrica, 63(4):841–890.

Nevo, A. (2001). Measuring market power in the ready-to-eat cereal industry.
Econometrica, 69(2):307–342.

Nevo, A. (2000b). A practitioner’s guide to estimation of random-coefficients logit
models of demand.
Journal of Economics and Management Strategy, 9(4):513–548.

Other useful material to consult includes Ackerberg et al. (2007), Cameron and Trivedi
(2005) (Chapter 6), Train (2003) (Chapters 3 & 9), Hausman et al. (1994), and Reiss and
Wolak (2007). And most recently, Conlon and Gortmaker (2020).
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PRELIMINARIES
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PRELIMINARIES
WHY DEMAND ESTIMATION?

Demand systems often form the bedrock upon which empirical work in industrial
organization rests

A fundamental issue is to measure market power, which is measured by the price-cost
margin

L ≡ p−mc
p

(L = Lerner Index) (1)

Lerner Index is a measure of a firm’s market power (the index ranges from a high of 1 to a
low of 0, where for a perfectly competitive firm with p = mc, the value of the Lerner
index is zero)

But cost is often not observed – the “new empirical industrial organization” (NEIO)
literature is motivated by this data problem

General idea – measure the demand side and back out the price cost margins

How?
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WHY DEMAND ESTIMATION?
SINGLE PRODUCT MONOPOLIST

Consider the monopolist’s maximization problem

max
p

pq(p)− c(q(p)) (2)

FOC imply

q(p) + p
∂q(p)

∂p
=
∂c(q(p))

∂q

∂q(p)

∂p
= mc(q(p))

∂q(p)

∂p
(3)

At the optimal price

(p∗ −mc(q(p∗))) = − q(p)

∂q(p)/∂p

∣∣∣∣
p=p∗

(4)

or equivalently

L =
p∗ −mc(q(p∗))

p∗
= − 1

η(p∗)
(5)

where η(p∗) = p
q(p)

∂q(p)
∂p

∣∣∣
p=p∗

is the price elasticity of demand

7 / 215



WHY DEMAND ESTIMATION?
SINGLE PRODUCT MONOPOLIST

Inferring costs:

L ≡ p∗ −mc(q(p∗))
p∗

= − 1

η(p∗)

If the monopolist is pricing optimally, then estimate/knowledge of elasticity η allows us to
infer marginal cost mc

Similarly, if there was a cost shock, and if we have inferred the marginal cost mc, then we
can figure out its impact on price (assuming the firm still behaves optimally) from the
Lerner condition

p = mc+
1

(∂q(p)/∂p)
q(p)

Price is equal to marginal cost plus a markup

The markup depends on the curvature of the demand curve (if demand is perfectly elastic,
as in the case of the perfect competition, then p = mc)

Thus, if we can estimate demand elasticity, we can back out the markups

The idea extends to oligopoly as well
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PRELIMINARIES
ESTIMATION ISSUES AND APPROACHES TO DEMAND ESTIMATION

Topology of Various Approaches

single vs multi-products
product or characteristics space
representative vs heterogeneous agents

Common Problems

endogeneity
multicollinearity
the dimensionality problem
unobserved heterogeneity among consumers

Depending on the context and the question, a researcher needs to be careful about
choosing the appropriate estimation methodology, as there are tradeoffs between how well
different methods deal with these issues and how relevant any given problem is within a
context
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PRELIMINARIES
SINGLE VS. MULTIPRODUCT SYSTEMS

When there are differentiated products, we want to estimate the system of demand
equations and infer the markups using the full cross-elasticity matrix

q1 = q1(p1, p2, . . . pj , . . . , pJ ,X1; ξ1,θ1)

q2 = q2(p1, p2, . . . pj , . . . , pJ ,X2; ξ2,θ2)

...

qj = qj(p1, p2, . . . pj , . . . , pJ ,X3; ξj ,θj)

where j = 1, . . . , j, . . . , J represent the J different related products and θj are the
paraments in the j-th demand function qj(·) that need to be estimated

Elasticity matrix is represented by

η =


η11 η12 . . . η1j
η21 η22 . . . η2j

...
ηJ1 ηJ2 . . . ηJJ

 where ηji =
∂qj(·)
∂pi

pi
qj(·)

Example ...
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PRELIMINARIES
SINGLE VS. MULTIPRODUCT SYSTEMS

Example ...

Say there are just three related products ... J = 3 and demand is specified in log-log form
(aka Cobb-Douglas)

lnq1 = α10 + β11lnp1 + β12lnp2 + β13lnp3 + γ14X1 + η1

lnq2 = α20 + β21lnp1 + β22lnp2 + β23lnp3 + γ24X2 + η2

lnq3 = α30 + β31lnp1 + β32lnp2 + β33lnp3 + γ34X3 + η3

then the elasticity matrix is constructed from the β parameters

η =

β11 β12 β13
β21 β22 β23
β31 β32 β33

 where ηji =
∂qj(·)
∂pi

pi
qj(·)

=
∂lnqj
∂lnpi

= βji

Note that with just three products, the elasticity matrix in the example above requires
estimating at least nine parameters from the demand system above
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PRELIMINARIES
SINGLE VS. MULTIPRODUCT SYSTEMS

Should we be measuring demand for aggregate product type (drugs) or individual brands?
Prices move together

Most products have substitutes or complements and it is often necessary to explicitly
account for the substitution possibilities to adequately answer the research question at
hand

In the context of multi-products, the researcher also has to face the problem of
dimensionality and multicollinearity

Consider a system of demand equations

q = D(p, z;θ, ξ) (6)

where q is a J × 1 vector of quantities, p is a vector of prices, z is a vector of
exogenous variables that shift demand, θ are the parameters to be estimated, and ξ
are the error terms
In a system with J products, even with some simple and restrictive forms, the
number of parameters to estimate is large
If D(·) is linear so that D(p) = Ap where A is a J × J matrix of slope
coefficients, then there are J2 parameters to estimate (plus additional ones due to the
exogenous variables z)
Restrictions ...
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PRELIMINARIES
SINGLE VS. MULTIPRODUCT SYSTEMS

Imposing the symmetry of the Slutsky matrix or adding up restrictions (Engle
and Cournout aggregation) reduces the number of parameters to be estimated
However, the essential problem, that the number of parameters increases in the
square of the number of products, remains

Slutsky equation: ∂qj
∂pi

=
∂hj
∂pi
− qi ∂qj∂y

Engle aggregation:
∑
j sjηjy = 1

Cournot aggregation:
∑
j sjηji = −si) where ηji

qj and hj are the Marshallian and Hicksian demand functions respectively for product j,
and y is the income or total expenditure
ηji is the cross price elasticity of product j with respect to price of i, ηjy is the income
elasticity of product j and si, sj are the expenditure shares
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PRELIMINARIES
SINGLE VS. MULTIPRODUCT SYSTEMS

If the research question allows, avoid the problem of estimating too many
parameters by working with a more restrictive form
Consider the constant elasticity of substitution (CES) utility function

u(q; ρ) = u(q1, q2, . . . , qJ ; ρ) =
( J∑

i

qρi

)1/ρ

(7)

where ρ is the parameter of interest that measures the elasticity of substitution
The demand for a representative consumer is then given by

qj(p, I; ρ) =
p

1/(1−ρ)
j∑J
i p

ρ/(1−ρ)
i

I j = 1, . . . , J. (8)

Need to estimate only one parameter ... not J2 – problem solved!
But now the cross elasticity between products i and j is the same as between k
and j for all combinations of i, j, k,

∂qi
∂pj

pj
qi

=
∂qk
∂pj

pj
qk

∀i, j, k. (9)
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PRELIMINARIES
SINGLE VS. MULTIPRODUCT SYSTEMS

An alternative to the single parameter of the CES utility function is the logit
demand (Anderson, de Palma, and Thisse, 1992)

u(q; δ) =

J∑
j

δjqj −
J∑
j

qj ln qj . (10)

Elasticities in this model depend on market shares (given by J number of
parameters δj) but not on the similarities among the products
What if products j and k are more alike (coke,pepsi) and product i is somewhat
more different (fanta)?
Will discuss logit properties further (later)
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DEMAND MODELS
ENDOGENEITY AND IDENTIFICATION

Demand models often suffer from the endogeneity problem

Endogeneity means when in an econometric equation, a right-hand side is correlated
with the error term
In demand models, this is because the prices on the right-hand side are typically
correlated with the error term
A consequence of that is that it violates one of the classical assumptions of the OLS
regression theory and hence leads to biased estimates of the demand parameters

The Problem – Consider an equation such as

Yi = β1 + β2X2i + ui

where the interest is in knowing the value of β2.

If (E[X2i, ui] 6= 0) then simple regression based methods will produce biased
estimates such that E(β̂2) 6= β2 .
This is because E[X2i, ui] 6= 0 (crucial assumption in OLS) due to

measurement error of X2

omitted variable(s) X3 correlated with both Y and X2

simultaneity – i.e., where X2 and Y are jointly determined
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DEMAND MODELS
ENDOGENEITY AND IDENTIFICATION

In typical demand analysis with n products

Quantity demanded is a function of own price, price of related products and other
demand shifters, Qdi = f(p1, p2, . . . , pi, . . . , pn, Xi).
The supply curve Qsi is also a function of its own price and marginal cost
Qsi = f(pi, Ci).
The observed price and quantity (or shares) are jointly determined via market
clearing (demand equals supply, Qdi = Qsi ).
Regression of quantity on prices (even after holding other variables constant) will
result in neither the estimates of the demand curve nor of the supply curve.
Demand curve can be identified via variables that shift the supply curve (e.g. cost of
production).
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DEMAND MODELS
ENDOGENEITY AND IDENTIFICATION

The Cure – For each endogenous variable such as X2, find a variable (instrument) Z such
that

it is relevant (i.e., E[X2i, Zi] 6= 0)
it is valid (i.e., E[Yi, Zi] = 0)

The IV procedure – In two easy steps

Regress X2i on Zi and obtain predicted values of X2 (say X̂2)
Regress Y on X̂2 – coefficient on X2 is now an unbiased estimate of β2
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DEMAND MODELS
ENDOGENEITY AND IDENTIFICATION

Instruments

To estimate demand curves, we need at least n relevant and valid instruments
(Z1, Z2, . . . , Zn).
Ci enter the supply function and hence are relevant (i.e., E[pi, Ci] 6= 0).
Ci do not enter the demand function and hence are valid (i.e., E[Qi, Ci] = 0).
Good News: Can use the (marginal) costs Ci of the products as instruments for the
prices.
Bad News: Data on marginal costs by product line is often not available.

Need some different types of instruments to estimate demand curves.
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PRELIMINARIES
ENDOGENEITY

Prices are often endogenous ...
Consider a simple linear demand/supply model for a single homogenous product
over T markets, where aggregate demand/supply relations are given by

qdt = β10 + γ12pt + β11x1t + ξ1t,

pt = β20 + γ22q
s
t + β22x2t + ξ2t,

qst = qdt

(11)

error terms are such that*

E(ξ1t|xt) = 0, E(ξ2t|xt) = 0,

E(ξ2
1t|xt) = σ2

1 , E(ξ2
2t|xt) = σ2

2

E(ξ1txt) = 0, E(ξ2txt) = 0,

and E(ξ1tξ2t|xt) = 0

(12)

where xt = [1 x1t x2t]
*Since we have already made the stronger assumption that E(ξ1t|xt) = 0, technically we do not need

to explicitly assume that E(ξ1txt) = 0, since the latter is implied by the former assumption of zero
conditional mean due to the law of iterated expectations. Nonetheless, I include it just to be clear.
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PRELIMINARIES
ENDOGENEITY

Prices are often endogenous ...
solve for the reduced form equilibrium values of q∗ and p∗ – dropping subscript
t, we get

q∗ =
β10 + β20γ12

1− γ12γ22
+

β11

1− γ12γ22
x1 +

γ12β22

1− γ12γ22
x2 +

ξ1 + γ12ξ2
1− γ12γ22

p∗ =
β20 + β10γ22

1− γ12γ22
+

β11γ22

1− γ12γ22
x1 +

β22

1− γ12γ22
x2 +

γ22ξ1 + ξ2
1− γ12γ22

(13)

p∗ is a function of ξ1 (and ξ2) and hence an OLS estimation of the demand
equation above (regress q on p, x1) will result in an inconsistent estimate of γ12

and other parameters
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PRELIMINARIES
ENDOGENEITY

Prices are often endogenous ...

Useful to explicitly compute the conditional covariance between p and ξ1

Note that conditional on xt,

p∗ − E(p∗) =
γ22ξ1 + ξ2
1− γ12γ22

and ξ1 − E(ξ1) = ξ1

(14)

Thus

cov(p, ξ1) =
γ22

1− γ12γ22
σ2
1 +

E(ξ1ξ2)

1− γ12γ22
(15)

Even if the error terms across the two equations were uncorrelated (E(ξ1tξ2t|xt = 0), the
covariance between p and ξ1 would still not be zero

On the other hand, if γ22 is zero, q does not appear in the supply equation, i.e., it is a
triangular system of equations and OLS estimation is fine as long as E(ξ1tξ2t|xt) = 0

For completeness – complete system of equations, i.e., the number of equations are equal
to the number of endogenous variables – we also require that γ12 6= 1/γ22.
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PRELIMINARIES
ENDOGENEITY

we can re-write the system in (11) in matrix notation

y′t =
[
qt pt

]
xt =

[
1 x1t x2t

]
ξ′t =

[
ξ1t ξ2t

]
Γ =

[
1 −γ22

−γ12 1

]
and, B =

β10 β20

β11 0
0 β22

 (16)

then, the system of equations above can be written as

y′tΓ− xtB = ξ′t (17)

so that the reduced form equation is

y′t = xtΠ + v′t where Π = BΓ−1 and, v′t = ξ′tΓ
−1 (18)

Note that in the equation above we are taking the inverse of the Γ – but the
inverse exists if the determinant (det(Γ) = 1− γ12γ22) is not zero, which goes
back to the condition γ12 6= 1/γ22 mentioned above

21 / 215



PRELIMINARIES
ENDOGENEITY

The moment restrictions in (12) (in general we do not need to impose
E(ξ1tξ2t|xt) = 0) are

E(ξt|xt) = 0, E(ξtξ
′
t|xt) = Σ

E(vt|xt) = 0, E(vtv
′
t|xt) = Ω

where Ω = (Γ−1)′ΣΓ−1.

(19)

Estimation can proceed with IV/2SLS (or 3SLS for joint estimation), where the
demand equation is estimated using x2t as the instrument, and supply equation is
estimated using x1t as the instrument
If either β22 = 0 or if data on x2t is not available, demand equation cannot be
identified/estimated consistently (vice versa for supply equation)
Since the x’s are exogenous variables, they can serve as instruments

x2t are cost shifters – they affect production costs; Correlated with pt but not with
ξ1t, hence use as instruments in demand function
x1t are demand shifters – affect willingness-to-pay, but not a firm’s production costs;
Correlated with qt but not with ξ2t, hence use as instruments in supply function
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PRELIMINARIES
PRODUCT VS CHARACTERISTICS SPACE

Product Space
Consumers have preferences over products
Usual utility maximization problem
Leads to demand at the product level
In that sense, demand analysis in product space is more natural (or at least more
familiar)

Characteristics Space
Views products as bundles of characteristics
Consumers have preferences over those characteristics
Each individual’s demand for a given product is just a function of the characteristics
of the product

We can think of a set of products (Toyota Minivan, Lexus SUV, etc.) or we can
think of them as a collection of various properties (horsepower, size, color, etc.)
In general, demand systems in characteristic space are approximations to product
space demand systems and hence, we can either model consumers as having
preferences over products, or over characteristics (note that not all of the
characteristics need to be observed and may form part of the error term)
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PRELIMINARIES
PRODUCT VS CHARACTERISTICS SPACE

Considerations
Dimensionality of Products
Dimensionality of Characteristics
New Goods
Cross elasticities
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PRELIMINARIES
PRODUCT VS CHARACTERISTICS SPACE

Considerations
Dimensionality of Products

For large number of products (say J = 50), the product space approach leads to the
dimensionality problem mentioned earlier, and may require grouping/nesting these
products. By contrast, if we can reduce J products to just a few K characteristics, and
the preferences over those characteristics are, say normally distributed, then we have to
estimate K means and K(K + 1)/2 covariances. If there were no unobserved
characteristics, then K(1 + (K + 1)/2) parameters would suffice to analyze own and
cross-price elasticities for all J goods.

Dimensionality of Characteristics
New Goods
Cross elasticities
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PRELIMINARIES
PRODUCT VS CHARACTERISTICS SPACE

Considerations
Dimensionality of Products
Dimensionality of Characteristics

By contrast, if we can reduce J products to just a few K characteristics and the
preferences over those characteristics are, say normally distributed, then we have to
estimate K means and K(K + 1)/2 covariances. If there were no unobserved
characteristics, then K(1 + (K + 1)/2) parameters would suffice to analyze own and
cross-price elasticities for all J goods.
If there are too many characteristics (K is large), then the the problem of too many
parameters re-appears as in the product space case, and we need data on each of these
characteristics. A solution is to model some of them as unobserved characteristics – but
this leads to the endogeneity problem if the unobserved characteristics (think product
quality) are correlated with the price, which they usually are.

New Goods
Cross elasticities
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PRELIMINARIES
PRODUCT VS CHARACTERISTICS SPACE

Considerations
Dimensionality of Products
Dimensionality of Characteristics
New Goods

If we are interested in the counterfactual exercise to assess the welfare impact of a new
introduction in an ex-ante period (say a new proposed generic drug or a me-too drug), it
is difficult to do so in the product space (we can do it using ex-post data though), but it is
easier to do this exercise using the characteristic space approach. This is because if we
have estimated the demand system using the characteristic approach, and we know the
proposed characteristics of the new good, we can, in principle, analyze what the demand
for the new good would be. Note however that if the new good is totally different from
products already in the market, i.e., have very different (and new) properties,
characteristics space approaches may not help either (e.g., could we have predicted the
demand for laptops based on the characteristics of desktop computers, or for a new drug
which proposes treatment of a formerly un-treatable disease?)

Cross elasticities
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PRELIMINARIES
PRODUCT VS CHARACTERISTICS SPACE

Considerations
Dimensionality of Products
Dimensionality of Characteristics
New Goods
Cross elasticities

Most of the characteristics space estimation, at least on aggregate data, does not easily
lend to analyzing products that are used in bundles or as complements. This is an
ongoing area of research.
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PRELIMINARIES
REPRESENTATIVE OR HETEROGENOUS CONSUMER

Consider the demand function of single product j in market t for a representative
consumer, given by

qjt = γj + αjpjt + xjtβj + ξjt (22)

where xjt is a vector of product characteristics and ξjt are the unobserved components of
demand

Interest is in estimating αj and demand elasticity
Even though product specific intercepts γj have been included in the model, they are
demand shifters, and as such do not change the sensitivity to price depending on the
level of income or other demographic characteristics such as family size
Micro studies often show that the price coefficient depends on an important way on
income/wealth, i.e., lower-income people care more about price
Consequently, if the income distribution varies across the markets, we should expect
the price coefficient to vary across these markets, and we need to find a way to allow
for it
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PRELIMINARIES
REPRESENTATIVE OR HETEROGENOUS CONSUMER

Consider the demand function of single product j in market t for a representative
consumer, given by

qjt = γj + αjpjt + xjtβj + ξjt (22)

where xjt is a vector of product characteristics and ξjt are the unobserved components of
demand

One could make γj to be a function of income, but they are still demand shifters and
do not change the sensitivity to price. Similarly, other demographic differences may
be important to model as well
One could potentially include some ad-hoc interaction terms between average values
of demographic variables in market t with price (and other product characteristics)
but may not represent demand derived from a consumer’s utility maximization
problem
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PRELIMINARIES
REPRESENTATIVE OR HETEROGENOUS CONSUMER

To make it a heterogenous agent model, it is more typical to build a micro model where
the parameters that enter the utility function of a consumer – say γj and αj – vary over
individuals and are perhaps functions of their demographics
In that case, the demand equations to be estimated would end up looking something like

qjt =

∫
γijdG(γij) +

∫
αijpjtdF (αij) + xjtβj + ξjt (23)

where γij and αij are person and product specific random intercepts and slope
coefficients, with known or assumed distribution functions γij ∼ G (γ|τ) and
αij ∼ F (α|θ), and where θ and τ are parameters to be estimated and are functions
of demographic variables
This is called a random coefficients model
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DEMAND MODELS
PRODUCT VS CHARACTERISTICS SPACE

Depending on the context and the question, a researcher needs to be careful about
choosing the appropriate estimation methodology

Earlier empirical work focused on specifying representative consumer demand systems
such that they allowed for various substitution patterns, and were consistent with
economic theory

Linear Expenditure model (Stone, 1954)
the Rotterdam model (Theil, 1965; and Barten 1966)
or the more flexible ones such as the Translog model (Christensen, Jorgenson, and
Lau, 1975) and the Almost Ideal Demand System (AIDS – Deaton and Muellbauer,
1980a)

We will focus on the AIDS model but within the context of multistage budgeting as well
as variants of the logit models — logit, nested logit, random coefficients logit – based on
works by Berry (1994) and Berry et al. (1995) (henceforth BLP)
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ESTIMATION IN PRODUCT SPACE
(AIDS Model only)
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ALMOST IDEAL DEMAND SYSTEM
ALMOST IDEAL DEMAND SYSTEM (AIDS)

Several demand models in product space can be linked to consumer theory — linear,
linear expenditure model, constant elasticity of substitution (CES), Cobb-Douglas,
Rotterdam model, Translog model, etc., with varying theoretical properties

A popular demand system, introduced by Deaton and Muellbauer (1980a,b), is the
“Almost Ideal Demand System” (AIDS) — it has several desirable theoretical properties
(not discussed in detail here but see the appendix)†

aggregates over consumers and allows for non-linear Engle curves
has a flexible substitution pattern and provides a first-order approximation to any
other demand system
we can impose and test restrictions on parameters (symmetry, homogeneity)
can be linearized via the Stone price index (but that has some consequences on the
estimation of elasticities ... )

†Aggregation and non-linear Engle curves properties are related to the Gorman polar form of the
expenditure functions. Further, AIDS modes are often estimated in the context of separability and
multistage budgeting by a consumer. I have skipped the details but discuss them in more detail in the
Appendix.
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AIDS MODEL
EXPENDITURE FUNCTION

The model starts by specifying a representative consumer’s expenditure function, given
by‡

ln(y) = ln(e(p, u0)) = (1− u0) ln(a(p)) + u0 ln(b(p)) (24)

where y is the total expenditure, p is the vector of prices of relevant goods and u0 is the
utility of the representative consumer, and

ln a(p) = α0 +
∑
j

αj ln pj +
1

2

∑
j

∑
k

γ∗jk ln pj ln pk

ln b(p) = ln a(p) + β0
∏
j

p
βj
j

(25)

The expenditure function will be linearly homogenous in p as long as∑
j αj = 1,

∑
j γ
∗
kj =

∑
k γ
∗
kj =

∑
j βj = 0

‡Recall that an expenditure function e(p, u0) indicates the minimum amount of money necessary to
purchase as many units of goods at the given prices p to obtain utility level u0
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AIDS MODEL
DEMAND AND SHARE EQUATIONS

Microeconomic theory tells us that if take partial derivatives of the expenditure function
wrt prices, we will obtain the Hicksian (compensated) demand functions – and if we
further replace the utility with indirect utility, we will obtain the observable demand
curves (Marshallian or uncompensated demand functions)

Thus, for a set of J products, the demand for an good j is given by

qj(p, y) =
y

pj

(
αj +

∑
k

γjk ln pk + βj ln(y/P )
)

and where P is a translog price index defined by

lnP = α0 +
∑
k

αk ln pk +
1

2

∑
i

∑
k

γki ln pk ln pi

(26)

where γjk = 1
2
(γ∗jk + γ∗kj)

The demand system given above is estimated in expenditure share form sj = qjpj/y, and
hence the system of equations to be estimated are given by
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AIDS MODEL
SHARE EQUATIONS AND RESTRICTIONS

The demand system given above is estimated in expenditure share form sj = qjpj/y, and
hence the system of equations to be estimated are given by

sj = αj +
∑
k

γjk ln pk + βj ln(y/P ) + uj

lnP = α0 +
∑
k

αk ln pk +
1

2

∑
i

∑
k

γki ln pk ln pi

(27)

Note that I have added in an econometric error term uj – also, demographic
differences can be added in by modeling them as functions of αj
The restrictions on the parameter of the cost function impose restriction on the
parameters of the AIDS demand system (27) given by

J∑
j=1

αj = 1

J∑
j=1

γjk = 0

J∑
j=1

βj = 0

∑
k

γjk = 0 γjk = γkj

(28)

Provided the restrictions above hold (or are imposed), (27) represents a system of
demand functions which add up to total expenditure (

∑
sj = 1), are homogeneous

of degree zero in prices and total expenditure taken together, and satisfy Slutsky
symmetry and give nonlinear Engle curves 33 / 215



AIDS MODEL
STONE PRICE INDEX AND LA-AIDS

The system of equations (27) is non-linear: estimation of parameters in the share equation
requires that we know the value of the price index – but that can’t be computed until we
have the parameters – so need to use non-linear estimation methods

A popular simplification is to linearize via the Stone price index which does not use these
parameters (called LA-AIDS)

lnP =
∑
j

sj ln pj (29)

We can now estimate the system of equations as lnP can be computed from the data
before estimation – but now the problem is that we will introduce a simultaneity bias
(endogeneity) even if prices were exogenous as the share sj appears on both sides of the
equation

To deal with this endogeneity, in panel settings sj is often replaced by (i) a lagged
value sj,t−1, (ii) first period average value s̄j0 (aka Laspeyres price index) (iii)
sample average value s̄j , (iv) other ... all such choices impact how elasticity is
computed
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AIDS MODEL
ELASTICITIES

Under LA-AIDS (and with first-period average values in the Stone price index,
i.e., Laspeyres index), the own and cross-price elasticity (Marshallian) for
product j wrt to price of k can be computed as

ηjk ≡
ln qj
ln pk

=
1

sj
(−βj s̄k0 + γjk)− δjk (30)

where δjk is equal to 1 if j = k and zero otherwise
The expenditure elasticity of product j, denoted ej , and compensated (Hicksian)
elasticities hik are then given by

ej = 1 +
βj
sj

hjk = ηjk + skej

(31)
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AIDS MODEL
ENDOGENEITY AND INSTRUMENTS

Prices are likely to be endogenous in most applications

Earlier we discussed how endogeneity can arise in the context of a competitive
single-product demand-supply model, where due to the simultaneity, the price and the
error term in the demand equation are correlated (see equation (15))

The endogeneity concern arises in a variety of differentiated products pricing models as
well

Let the demand for the ith product be given by qi = Di(p, zi; ξi), where ξi is the error
term and consists of unobserved product characteristics, and zi is the vector of exogenous
demand shifters (say the observed product characteristics)

If there are L firms, and the lth firm produces a subset Ll of the products, then it
maximizes its joint profit over these products as

Πl =
∑
r∈Ll

(pr − cr)qr(p, zr, ξr), (32)

where cr is the constant marginal cost of the rth product
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AIDS MODEL
ENDOGENEITY AND INSTRUMENTS

Nash-Bertrand price competition, price pi of any product i produced by firm l satisfies the
first-order condition

qi(p, zi; ξi) +
∑
r∈Ll

(pr − cr)
∂qr(p, zr; ξr)

∂pi
= 0 (33)

The equilibrium price for product i would be a function of its marginal cost and a markup
term, and in matrix form (for all equilibrium prices) is given by

p = c + Ω−1q(p, z; ξ), (34)

where
Ω is defined such that Ωri = −Ori ∂qr(p,zr ;ξr)∂pi
O is 1/0 joint ownership matrix with ones in the leading diagonals and in r, i position if these products are
produced by the same firm and zeros everywhere else

The markup term is a function of the same error terms, and hence generally, prices will be
endogenous so that OLS/SUR estimation will lead to biased estimates of the demand
parameters
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AIDS MODEL
ENDOGENEITY AND INSTRUMENTS

The usual starting place for demand-side instruments is to use cost shifters (terms that
affect c, such as cost of raw materials) that are uncorrelated with demand shocks

These can work well for homogenous products, but in the case of differentiated products,
we would need cost shifters that vary by individual brands, which are often very difficult
to obtain

Two types of instruments that have grown in popularity (use with caution as may or may
not be valid in your application)

Berry (1994)/Berry et al. (1995) (BLP)
Hausman et al. (1994)
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AIDS MODEL
ENDOGENEITY AND INSTRUMENTS (À LA BLP)

Berry (1994) builds on Bresnahan’s (1981) assumption that the location of products in a
characteristics space is determined prior to the revelation of the consumer’s valuation of
the unobserved product characteristics

BLP use this assumption to generate a set of instrumental variables: they use the observed
product characteristics (excluding price and any other endogenous characteristics of the
product), the sums of the values of the same characteristics of other products offered by
that firm, and the sums of the values of the same characteristics of products offered by
other firms
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AIDS MODEL
ENDOGENEITY AND INSTRUMENTS (À LA BLP)

Consider the case when there are two firms, X and Y and each is producing three
products A,B,C and D,E,F respectively
Suppose further that each of these products has two observable characters, S (say,
package size, which is the number of pills in a box) and T (number of times a pill
must be taken during a day for a standard diagnosis)
Then for the price of A, which is produced by firm X, there are 6 potential
instruments:

SAX and TAX – the values of S and T of product A
SBX + SCX and TBX + TCX – the sum of S and T over the firms two other
products B and C
SDY + SEY + SFY and TDY + TEY + TFY – the sum of S and T over the
competitor’s products D,E, and F

Similar instruments can be constructed for prices of other products
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AIDS MODEL
ENDOGENEITY AND INSTRUMENTS (À LA BLP)

Main advantage of this approach (if valid) is that it gives instruments that vary by brands

Problems arise if the assumption that the unobserved characteristics are uncorrelated with
observed characteristics is not valid

for instance, if the observed characteristics are changing over time, and the change in
observed characteristics is for the same unobserved factors that determine the price

Another potential issue arises if brand dummies are included in the estimation, since then
it must be the case that there is variation in products offered in different markets, else
there will be no variation between the instruments in these markets
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AIDS MODEL
ENDOGENEITY AND INSTRUMENTS (À LA HAUSMAN)

A second set of instruments is due to Hausman et al. (1994) and has been used in several
papers

Hausman uses the panel nature of data and the assumption that prices in different areas
(cities) are correlated via common cost shocks, to use prices from other areas as
instruments for prices in a given city and there are no common demand side shocks
across the two cities

The identifying assumption is that after controlling for brand-specific intercepts and
demographics, the city-specific valuations of a product are independent across cities but
may be correlated within a city over time

Given this assumption, the prices of the brand in other cities are valid instruments so that
prices of brand j in two cities will be correlated due to the common marginal cost, but due
to the independence assumption will be uncorrelated with the market-specific valuation of
the product
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AIDS MODEL
ENDOGENEITY AND INSTRUMENTS (À LA HAUSMAN)

A second set of instruments is due to Hausman et al. (1994) and has been used in several
papers – common cost shocks and no common demand side shocks across cities

The reduced form price of a product i in two cities, a = 1 and a = 2 at time period t, will
be given by

ln pi1t = π1 ln cit + xi1tπ2 + vi1t

ln pi2t = π1 ln cit + xi2tπ2 + vi2t,
(35)

where

cit is the common cost component of the price in two different cities
xiat are brand level demand shifters (demographics, time trends) as well
city-specific brand differentials (intercepts by brands and cities) due to differences
in transportation costs or local wages
In general, the error terms viat will be correlated with the error term in equation (27)
(or ϕiat in equation (36) in a later example), and hence OLS/SUR will give
inconsistent estimates
If however, vi1t is uncorrelated with vi2t, then city two’s prices will be uncorrelated
with the error term in equation (27) (or ϕi1t in equation (36)), and hence the
instrument will be valid
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AIDS MODEL
ENDOGENEITY AND INSTRUMENTS (À LA HAUSMAN)

Further, since the prices in the two cities are driven by the same underlying common
costs cit, they will be correlated to each other and hence relevant

Hausman instruments also rely on no correlation between vi1t and vi2t – this assumption
may be invalid if the terms are related due to common demand side shocks across the two
cities

Example: a national campaign will increase the unobserved valuation of product i in
both cities, thus violating the independence assumption
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AIDS MODEL
MULTISTAGE BUDGETING

We will estimate such a demand system shortly (using SAS and/or STATA)
However, AIDS modeling is often done in the context of multistage budgeting
along with separability of preferences (related but distinct concepts)
Separability refers to the case when a consumer’s preferences for products of one
group are independent of product-specific consumption of products from other
groups
Multistage budgeting refers to when a consumer (or household) can allocate their
total expenditure on different goods in sequential stages, represented as a utility tree,
where in the first stage, the total current expenditure is allocated to broad groups of
products (food, housing, entertainment) followed by the allocation of expenditures
within each broad group (e.g., meats, vegetables, etc. within the food group)
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AIDS MODEL
MULTISTAGE BUDGETING

Typical applications involve a three (or four) stage system where

The top level corresponds to the overall demand for the product (e.g., beer,
pharmaceutical drugs, RTE cereals, etc.)
The middle level consists of the demand for different market segments (e.g., in the
demand for beer example, the middle segment consists of four groups of beer –
premium beer, light beer, imported beer, and non-premium beer, while in the RTE
cereal example, the middle segments are family, kids, and adult cereals)
The bottom-level segment involves a flexible brand demand system corresponding
to the competition between the different brands within each segment

For each of these stages a flexible parametric functional form is assumed

The choice of functional form is driven by the need for flexibility, but also requires
that the conditions for multistage budgeting are met
Note – all stages are not necessarily modeled via AIDS and may include
cobb-douglas and linear models at different levels

Examples

Bokhari and Fournier (2013) – a 4-level system for ADHD drugs
Hausman et al. (1994) – a 3-level system for Beers
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AIDS MODEL
EXAMPLE W/ MULTISTAGE BUDGETING

We will use a four-level system example from Bokhari and Fournier (2013)
The top level consists of the aggregate demand for drugs used in the treatment of
ADHD
The second level segments by the types of molecules used in different drugs (four
different groups of molecules)
The third level further segments the market by the form of the drug, i.e., if it is 4hr,
8hr or a 12hr effect drug
The the bottom level, different brands, and generics are considered within each
molecule-form segment of the market
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AIDS MODEL
EXAMPLE W/ MULTISTAGE BUDGETING

A typical application has the AIDS model at the lowest level

The demand for product i in segment fm, which consists of Ifm number of products, in
area a at period t is given by

Level 1 (Bottom):

siatfm = αifm + βifm ln(
Rfmat
Pfmat

) +

Ifm∑
j=1

γijfm lnPjatfm + xiatfmλifm + ϕiatfm

(36)

where
siatfm is the revenue share of product i
lnPjatfm is the (log) price of product j (also in segment f-m)
Rfmat is the total expenditure on the segment
Pfmat is a price index for the segment
xiatfm are other exogenous variables which may be varying by product, market, or segment and may
include terms like demographic variables, time trends, area fixed effects, or any observable product
characteristics if they vary by markets

Estimate a system of such equations for each segment, either jointly (all equations from
all segments together) or on a segment-by-segment basis – e.g., estimate the system for
MPH-IR, MPH-ER, MAS-IR, etc.
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AIDS MODEL
EXAMPLE W/ MULTISTAGE BUDGETING

The demand for product i in segment fm, which consists of Ifm number of products, in
area a at period t is given by

Level 1 (Bottom):

siatfm = αifm + βifm ln(
Rfmat
Pfmat

) +

Ifm∑
j=1

γijfm lnPjatfm + xiatfmλifm + ϕiatfm

(36)

To impose the restrictions, we require (for each segment)

Ifm∑
i=1

αifm = 1

Ifm∑
i=1

γikfm = 0

Ifm∑
i=1

βifm = 0∑
k

γikfm = 0 γikfm = γkifm

(37)

where the last share equation per segment is not estimated as the shares must add up
to one (recall that the revenue shares are shares relative to total spending in this
segment and not total spending on all drugs)
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AIDS MODEL
EXAMPLE W/ MULTISTAGE BUDGETING

The demand for product i in segment fm, which consists of Ifm number of products, in
area a at period t is given by

Level 1 (Bottom):

siatfm = αifm + βifm ln(
Rfmat
Pfmat

) +

Ifm∑
j=1

γijfm lnPjatfm + xiatfmλifm + ϕiatfm

(36)

Price Index: Deaton and Muellbaur’s exact price index Pfmat is given by

lnPfmat = α0fm +

Ifm∑
i

αifm lnPiatfm +
1

2

Ifm∑
i

Ifm∑
k

γkifm lnPkatfm lnPiatfm

(38)
This index involves the same parameters that need to be estimated, and hence AIDS
estimation requires non-linear estimation methods
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AIDS MODEL
EXAMPLE W/ MULTISTAGE BUDGETING

Alternatively, use Stone price index

lnPfmat =

Ifm∑
i

siatfm lnPiatfm (39)

which makes the estimation linear – but now equation (36) involves shares on both
the left-hand side and right hand side of the equation
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AIDS MODEL
EXAMPLE W/ MULTISTAGE BUDGETING

The demand for product i in segment fm, which consists of Ifm number of products, in
area a at period t is given by

Level 1 (Bottom):

siatfm = αifm + βifm ln(
Rfmat
Pfmat

) +

Ifm∑
j=1

γijfm lnPjatfm + xiatfmλifm + ϕiatfm

(36)

Alternatively, use Stone price index

lnPfmat =

Ifm∑
i

siatfm lnPiatfm (39)

which makes the estimation linear – but now equation (36) involves shares on both
the left-hand side and right hand side of the equation
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AIDS MODEL
EXAMPLE W/ MULTISTAGE BUDGETING

In the price index, replace observed shares with average shares
In (39), Hausman and colleagues replace siatfm with s̄iafm – area specific average
value of siatfm , thus the value is different for each city but the same for all periods
(data is from many periods and a few cities)
In (39), B&F replace siatfm with s̄itfm – period specific average value of siatfm ,
thus the value is different for each period but the same for all areas (data is from
many counties and a few periods)
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AIDS MODEL
EXAMPLE W/ MULTISTAGE BUDGETING

At the next level up (the middle level, or level 2), demand captures the allocation between
segments and can again be modeled using the AIDS specification, in which case the
demand specified by the equation (36) is used with both expenditure shares and prices
aggregated to a segment level

Level 2 is aggregation up from level 1

Prices are aggregated using either equations (38) or (39) (exact or Stone price index)

If the latter (Stone price index) is used, then use siatfm for the purpose of creating a price
index for the upper level rather than s̄atfm or s̄itfm
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AIDS MODEL
EXAMPLE W/ MULTISTAGE BUDGETING

An alternative for level 2 is the log-log equation used by Hausman, Leonard, and Zona
(1994) and Hausman (1996) and is given by

Level 2 (Middle):

ln(q[fm]at) = A[fm] +B[fm] ln(Rat) +
FM∑
n=1

Γ[fm]n lnPnat + x[fm]atλ[fm] + ξ[fm]at

(40)
where (suppressing subscripts at for areas and periods)

q[fm] is the aggregate quantity of the [fm] bottom level segment, i.e., the total
quantity of RTE cereals for the family, kids or the adults segments in market at (city
and quarter)
P[fm] is the price of each of these [fm] segments, written as lnPn in the equation
above, where n is an indexing number for the lower level [fm] segment
The segment level prices are the price indexes from the lower level equations and
are computed using equations (38) or (39) as discussed earlier
The variable Rat is the total expenditure by market on all related products – e.g., it
is the sum of total sales of RTE cereals over the the three segments, kids, family, and
adults
And x[fm]at are the exogenous variables that are segment-specific characteristics –
if they are different for each market – or just demographic variables by markets

55 / 215



AIDS MODEL
EXAMPLE W/ MULTISTAGE BUDGETING

Note that the lower level of the demand system is AIDS, which satisfies the generalized
Gorman polar form,

In order to be consistent with exact two-stage budgeting, the preferences of the second
level should be additively separable (i.e., overall utility from ready-to-eat cereal or all
ADHD drugs should be additively separable in the sub-utilities from the various
subsegments)

Neither the second-level AIDS nor the log-log system satisfies this requirement§

For exact multistage budgeting to hold to the next level of aggregation (see appendix)
these preferences should be of generalized Gorman polar form

§Deaton and Muellbauer also discuss approximate – instead of exact – two-stage budgeting, and show
that if one uses the Rotterdam model, approximate two-stage budgeting implies that higher stages also have
Rotterdam functional form

56 / 215



AIDS MODEL
EXAMPLE W/ MULTISTAGE BUDGETING

B&F have two middle-level segments that differentiate drugs by forms within molecules
(level 2) and by molecules among all ADHD drugs (level 3)

Level 2 (Middle):

ufatm = afm + bfm ln(
Rmat
Pmat

) +

Fm∑
h=1

gfhm lnPhatm + xfatmλfm + µfatm

Level 3 (Middle):

ln(qmat) = Am +Bm ln(Rat) +

M∑
n=1

Γmn lnPnat + xmatλm + ξmat

(41)

where (suppressing subscripts at for exposition)
ufm is revenue share of form f within molecule m
Phm is the price of the form (i.e., the price indexes from level 1 segments) given by
– ln(Pfm) =

∑Ifm
j=1 sifm ln(Pjfm )

The terms Rm
Pm

are the total expenditures from all forms within molecule m, and a
price index for molecule m where the later is computed (using Stone index form) as

ln(Pm) =

Fm∑
h=1

ufm ln(Phm) (42)
57 / 215



AIDS MODEL
EXAMPLE W/ MULTISTAGE BUDGETING

For level 2, one needs to estimate as many equations as there are forms per molecule
(Fm), and repeat the process for each molecule

For instance, if there are four molecules, and each admits up to three forms, then a
total of four sets of system equations, with each set consisting of three equations
need to be estimated
Again, depending on the data, the estimations can be joint for all segments, or
segment by segment, and restrictions can be imposed within each segment much like
the lower levels

Level 3 is an aggregation from level 2

Thus, ln qm is the aggregate quantity for segment m and is the the sum of quantities
over all forms within this molecule
Similarly, lnPn is the price of molecule n used earlier in level 2 and is given by (42)
Total number of equations to be estimated equals the number of upper level
segments, e.g., the total number of molecules and the rest is the same as discussed
earlier in the context of middle-level equation (40)
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AIDS MODEL
EXAMPLE W/ MULTISTAGE BUDGETING

The top level is the demand for the entire set of subsegments (RTE cereal, beer, ADHD
drugs etc.) and is typically specified as

Level 4 (Top):
ln qat = A+B ln(Yat) +G lnPat + xatλ+ ζat

(43)

where

qat is the total quantity
Yat is the real income
xat are the demand shifters
and Pat is the overall price index for these products, given by share weighted sum of
(log) prices at the previous level and given by (again suppressing subscripts at),

ln(P ) =
M∑
m=1

vm ln(Pm) (44)

and where vm is the revenue share and Pm is the price index for molecule m
computed earlier in (42). Note that this form does satisfy additive separability,
which is required for exact two-stage budgeting.
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AIDS MODEL
EXAMPLE W/ MULTISTAGE BUDGETING

Note that every time we move up one level up, the price index from the lower level is the
‘price’ at the higher level – and the ‘price’ at the higher level is constructed as share
weighted average (NOT average fixed share)

Note that this form does satisfy additive separability, which is required for exact two-stage
budgeting
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AIDS MODEL
EXAMPLE W/ MULTISTAGE BUDGETING

Multi-budgeting process allows estimation of the conditional demand functions
(conditional on expenditures on the segment) at the lower levels and the cross-price
elasticities are limited to within the segment

From these conditional demand estimates, and estimates of the upper level equations, it is
possible to derive the unconditional cross-price elasticities across the full range of
products in different segments

Conditional on segment expenditure Rfm (in market at), price elasticity of a product is

∂ ln qifm
∂ ln pkf′m′

=
1

sifm

{(
− βifm s̄kf′m′ + γijf′m′

)
· 1[f ′ = f,m′ = m]

}
− 1[i = k, f ′ = f,m′ = m],

(45)

where

1[·] is the indicator function
elasticities conditional on Rfm are zero across products in different f-m segments
the subscript at has been suppressed in the equation above but is present on all
quantities, shares, prices etc. and s̄kf′m′ is either s̄ktf′m′ or s̄kaf′m′ depending on
whichever one was used in the Stone price index in level 1 share equations
elasticities can be computed in each market or at the average value of shares
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AIDS MODEL
EXAMPLE W/ MULTISTAGE BUDGETING

Elasticity at level 2 with respect to the price index for the segment and conditional on
segment revenue Rm in market at (where the market subscripts have been suppressed),
has a similar formula as for the bottom level (since both are in AIDS form) and is given by

∂ ln qfm
∂ ln pf ′m′

=
1

ufm

{(
− bfm ūf ′

m′
+ gfhm′

)
· 1[m′ = m]

}
− 1[f ′ = f,m′ = m],

(46)

Conditional cross price elasticity of forms in different level 3 segments (i.e., for forms in
different molecules) is zero

Price elasticities at level 3 (for example, at the molecule level), are just the Γmn
parameters in level 3 equation,

Elasticity with respect to price for the aggregate product is the value of the parameter G in
top-level equation
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AIDS MODEL
EXAMPLE W/ MULTISTAGE BUDGETING

Given all the parameters, unconditional elasticities can be computed as

∂ ln qifm
∂ ln pkf′

m′

=
(

1 +
βifm
sifm

)
s̄kf′

m′

[gff ′
m′

ufm
+ ūf ′

m′

]
· 1[m = m′]

+
(

1 +
βifm
sifm

)
s̄kf′

m′

[ bfmūf ′
m′

ufm
+ ūf ′

m′

]
Γmm′

+
1

sifm

{
γikf′

m′
− βifm s̄kf′

m′

}
· 1[f ′ = f,m′ = m]

− 1[i = k, f ′ = f,m′ = m]

(47)
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AIDS MODEL
EXAMPLE W/ MULTISTAGE BUDGETING

Please see the file model-estimate-AIDS-ver01.sas on how to estimate all the
segments on the simulated data along with computing all the elasticities

The above file produces, as output, two HTML files: one with all the regression
coefficients (both SUR and 3SLS) and a second file with all the elasticity measures (SUR
and 3SLS) for conditional and unconditional elasticities

An example of an unconditional elasticities matrix is given on the next slide (an 11 by 11
from the full 17 by 17 matrix)
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AIDS MODEL
EXAMPLE W/ MULTISTAGE BUDGETING
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AIDS MODEL
ESTIMATION EXAMPLE (WITH CODE)

We will now use a simulated data set to estimate the AIDS model for the
segment MPH-IR with four drugs

We will do so using SAS and STATA and where we will use the Stone price index
with fixed weights based on first period (Laspeyres price index)
We will also estimate the elasticities at the sample mean, which are typically not
easy to estimate unless we use software with proper matrix language — we will do
this second part in SAS only
We will then use a canned routine aidsills (a package) within STATA, which
makes estimation a lot easier and computes elasticity matrices for us at the sample
mean ... but does not give us the flexibility to set our price index ... and hence the
regression estimates as well as the elasticities will be different

Please download the SAS/STATA datasets “simulateddrugs01.sas7bdat”,
“simulateddrugs01.dat”, the read-me file
“readme-data-simulateddrugs01.pdf” and all the *.sas and *.do files
provided in the ‘training’ folder
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AIDS MODEL
ESTIMATION EXAMPLE (WITH CODE)

MPH-IR segment: four drugs, 780 counties large counties from the US, 4 years
(2000-2003)
Relevant variables (re-name as appropriate)

revenues: r4-r7
segment expenditure: y2
log prices: lpo4-lpo7
shares: s4-s7
average shares across all counties in base year: so4-so7
Stone price index for the segment: lpoi2
Hausman style price instruments: lpoz4-lpoz7; lpzi2
Other exogenous variables: t1,t2, lnkids,lnmds, lncaiddrugs, lnmcaidenrollees and
many more available (see readme-data-simulateddrugs01.pdf)

If estimating only this segment, re-name the variables so numbers go from 1-4
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Retain, rename and/or create new variables (SAS code)
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Use proc model procedure to estimate (SAS code)
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AIDS MODEL
ESTIMATION EXAMPLE (WITH CODE)

SAS’s proc model will produce SUR and 3SLS estimates of the parameters
but will not directly provide elasticities
We can compute elasticities within the same proc model via the estimate
command and it will also provide the standard errors but it is cumbersome to do
so here
Instead we can use various data steps to compute mean values of variables and
then load the estimates in IML to compute elasticity matrices
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Use proc iml to compute elasticities (and display all results)

Note: additional code to clean print the parameters and elasticities omitted (see
the SAS file) – results follow
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3SLS estimates
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3SLS elasticities
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Retain, rename and/or create new variables (STATA code)

Only part of the code shown (the rest is like SAS code in terms of renaming and
creating new variables)
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Estimate via reg3 command (STATA code)

This will give a nice compact output of all the regression coefficients (and these
should be the same as what we obtained in SAS)
However, it will not give elasticity estimate ... for that, you can use either the
nlcom command to program in each elasticity, or use STATA’s matrix language
to compute all of them together
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3SLS estimates (Same as SAS estimates)
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AIDS MODEL
ESTIMATION EXAMPLE (WITH CODE)

There are user-written packages in STATA that estimate AIDS models
A big advantage is that they also provide elasticity estimates along with standard
errors
A potential disadvantage is that they do not allow as much flexibility as you may
want in terms of how certain issues should be dealt
If you are going to use such a package, read the documentation carefully to be sure
that any restrictions they impose are ok in your specific case
The biggest limitation of such packages is they do not allow for multilevel
budgeting/nesting and so you need to do some programming yourself

The package aidsills (where ills stands for iterated least squares) provides
lots of good options for estimating the AIDS model

Importantly, it allows for the endogeneity of prices and the expenditure function (for
endogeneity, it uses the control function approach)
It provides elasticity matrices at the sample mean
However, it does not use the Stone price index, and hence the estimates can be
somewhat different
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aidsills (STATA’s user-written package)
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aidsills estimates
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aidsills elasticities
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AIDS MODEL
MULTISTAGE BUDGETING EXAMPLE (WITH CODE)

The appendix provides details about estimating all of the other segments on the
same simulated data and for all 4-levels
Importantly, it shows how to estimate cross-elasticities between products that
may be in different nests (referred to as unconditional elasticities)
You should go over them your self and we will return to them only if there is
additional time at the end

(there is also an accompanying SAS code available for estimating the full 4-level
system on the simulated data – see file model-estimate-AIDS-ver01.sas)
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DISCRETE CHOICE MODELS
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DISCRETE CHOICE MODELS
RANDOM UTILITY MODEL

Consumer chooses a single product from a finite set of goods

Each product is defined as a bundle of attributes (including price, which is a special
attribute), and consumers have preferences over these attributes

Consumers can have different relative preferences, which gives rise to the random
coefficients models, and they choose the product that maximizes their utility subject to the
usual constraints – when we impose constraints that preferences/marginal utilities are the
same, we obtain the logit model

This leads to different choices by different consumers

Aggregate demand is then derived as the sum over individuals and depends on the entire
distribution of consumer preferences
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DISCRETE CHOICE MODELS
RANDOM UTILITY MODEL

Indirect utility for individual n for product j in market t is given by

unjt = U(xjt, ξjt, ynt − pjt,dnt,νnt, εnjt;θn), for j = 0, 1, 2, . . . , J (48)

‘outside good’ is numbered 0 (when the consumer does not purchase any of the
observed products)
price of the outside good is often considered to be exogenous
vector xjt and random term ξjt are the observed and unobserved (to the
econometrician, but not to the consumer) product characteristics and do not vary
over consumers
product characteristics, multiplied by the parameters θn determine the level of
utility for consumer n
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DISCRETE CHOICE MODELS
RANDOM UTILITY MODEL

Indirect utility for individual n for product j in market t is given by

unjt = U(xjt, ξjt, ynt − pjt,dnt,νnt, εnjt;θn), for j = 0, 1, 2, . . . , J (48)

vectors dnt and νnt are vectors of observed and unobserved sources of differences
in consumer tastes
they do not enter the utility function directly, but rather enter into the model by
changing the value of the parameters of interest for each consumer
dnt may be a vector of observed demographics (income, family size, etc.), that
affect the parameters (marginal valuations) of product characteristics by individual
and change the value of θ for each attribute of the product by individual n
for each product attribute (including price) there is an additional randomness to the
marginal valuation by individuals and is captured by νnt
accounts for other unobserved person-specific characteristics that affect their
marginal valuation for an observed product characteristic – e.g., the number of dogs
a family owns affects their marginal valuation of the size of a car
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DISCRETE CHOICE MODELS
RANDOM UTILITY MODEL

Indirect utility for individual n for product j in market t is given by

unjt = U(xjt, ξjt, ynt − pjt,dnt,νnt, εnjt;θn), for j = 0, 1, 2, . . . , J (48)

if xjt is a k − 1 vector of observed characteristics, then νnt is a vector of length k
the coefficients θn depend on dnt and νnt
εnjt is a mean-zero stochastic term that enters directly into the utility of product j
for consumer n
for each consumer, εnt = (εn0t, εn1t, . . . , εnJt) is a vector of error terms with the
length of the vector equal to the number of products
ynt is the consumer’s income but is often subsumed into either ν or in d, so that
utility is modeled explicitly depending on prices, i.e.,
unjt = U(xjt, ξjt, pjt,dnt,νnt, εnjt;θn)
utility of the outside good is denoted as un0t = U(x0t, ξ0t,dnt,νnt, εn0t;θ) and is
normalized to zero
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DISCRETE CHOICE MODELS
RANDOM UTILITY MODEL – DERIVING DEMAND

Consumer n will choose product j when unjt ≥ unlt for all l = 0, 1, . . . , J and l 6= j

Differences in consumer choices arise only due to differences in the marginal valuations
θn (which are themselves functions of dnt and νnt), and the idiosyncratic terms εnjt, a
consumer can be described as a tuple (d,ν, ε)

The set Ajt defines characteristics of the individuals that choose brand j in market t

Ajt(θ) = {(dnt,νnt, εn0t, εn1t, . . . , εnJt) | unjt > unlt ∀ l = 0, 1, 2 . . . J, l 6= j}
(49)

Market share of product j is just the probability weighted sum of individuals in the set Ajt
Let F (d, ν, ε) be the population joint distribution function, then the market share of
product j is the integral of this distribution over the mass of individuals in the region Ajt,

sjt(x,p;θ) =

∫
Ajt

dF (d, ν, ε). (50)

If the size of the market is M (total number of consumers) then the aggregate demand for
the jth product is Msjt(x,p;θ)
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LOGIT DEMAND MODEL
UTILITY FUNCTION AND MARKET SHARES

Let the indirect utility for consumer n for product j in market t be given by

unjt = αn(yn − pjt) + xjtβn + ξjt + εnjt, where

n = 1, . . . , N, j = 0, 1, . . . , J, t = 1, 2, . . . , T, and

βn = β, αn = α, for all N

(51)

where

xjt is a k − 1 dimensional vector of observable characteristics (which may vary by
market)
ξjt is a scalar that summarizes the unobservable (to the econometrician) product
characteristics
neither of these terms varies over consumers
also, no variation in tastes across consumers, and the terms dnt and νnt do not enter
this model (in BLP/Random coefficient models, βn and αn vary across individuals
and in some applications we make them functions of dn and νn mentioned earlier –
as in Nevo (2001, 2000a))
outside option (product 0) is normalized by assuming that the price and other
characteristics are zero for this option so that

un0t = αyn + εn0t (52)
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LOGIT DEMAND MODEL
UTILITY FUNCTION AND MARKET SHARES

Utility function in (51) can be written more compactly as just

unjt = αyn + δjt + εnjt, (53)

where δjt ≡ α(−pjt) + xjtβ + ξjt is the mean utility for product j in market t

Since income is common to all options, and consumers only differ in the terms ε, the set
of individuals choosing product j is given by

Ajt(α, β) = {(εn0t, εn1t, . . . εnJt)|unjt > unlt ∀ l = 0, 1, 2 . . . J, l 6= j} (54)

Assume εnjt are independently and identically distributed (iid) and follow a Type-1
extreme value distribution, given by

f(ε) = exp(−ε) exp(− exp(−ε)) and F (ε) = exp(− exp(−ε)), (55)

where f(ε) and F (ε) are the PDF and CDF of the random variable ε
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LOGIT DEMAND MODEL
UTILITY FUNCTION AND MARKET SHARES

If εnjt are iid Type-1 extreme value distribution, then market share of product j (and the
probability that individual n chooses product j) is

sjt(δt) =

∫
Ajt

dF (ε) =
exp(δjt)∑J
j=0 exp(δjt)

. (56)

Since δ0t = 0 (so that (exp(δ0t) = exp(0) = 1), the share equation becomes

sjt =
exp(δjt)

1 +
∑J
j=1 exp(δjt)

s0t =
1

1 +
∑J
j=1 exp(δjt)

= 1−
J∑
j=1

sjt.

(57)

Since sjt/s0t = exp(δjt), and hence

ln(sjt)− ln(s0t) = δjt = α(−pjt) + xjtβ + ξjt (58)

can be estimated using linear regression methods
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LOGIT DEMAND MODEL
UTILITY FUNCTION AND MARKET SHARES

Since sjt/s0t = exp(δjt), and hence

ln(sjt)− ln(s0t) = δjt = α(−pjt) + xjtβ + ξjt (58)

can be estimated using linear regression methods

Instead of estimating J2 number of parameters, we only have to estimate a handful

Own and cross-price elasticities depend on only one parameter α

The closed (logit) form for the shares is due to both, the extreme value distribution, and
the iid assumption

The independence part of iid, causes serious limitations on the substitution patterns
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LOGIT DEMAND MODEL
ELASTICITIES AND SUBSTITUTION PATTERNS

The logit model suffers from the property known as the Independence of Irrelevant
Alternatives (IIA)

The (logit) probability that individual n chooses product j is given by (see (56))

Pr(j) =
exp(δj)∑J
j=0 exp(δj)

(56)

The relative probabilities of options j and k are thus

Pr(j)
Pr(k)

=
exp(δj)

exp(δk)
= exp(δj − δk) (59)

Ratio does not depend on characteristics of any other alternative other than those of j and
k

Thus the relative odds of choosing j over k are the same no matter what other alternatives
are available or what are the attributes of other alternatives (the values of δ′s)
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LOGIT DEMAND MODEL
ELASTICITIES AND SUBSTITUTION PATTERNS

IIA leads to substitution patterns that may be unrealistic

Blue Bus/Red Bus Example

A traveler can commute to work either by car (c) or by blue bus (bb)
Suppose further that it turns out (for simplicity) that Pr(bb) = Pr(c) = .5
Say a new type of bus is introduced that is identical in all other respects to the
existing blue bus (fare, route, smell, time it takes to get to work, etc.,) except that it
is red (rb)
We expect the new probabilities of the travel model would be
Pr(bb) = Pr(rb) = .25 and Pr(c) = .5
logit model would predict that the substitution from the two old modes of travel
(blue bus or car) to the new mode of travel (red bus) are such that they would depend
on the ratio of old probabilities
Since the old probabilities were equal, new probabilities for each of the new modes
would be Pr(bb) = Pr(rb) = Pr(c) = 1/3
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LOGIT DEMAND MODEL
ELASTICITIES AND SUBSTITUTION PATTERNS

IIA has implications for own and cross elasticities estimated via logit specification for the
aggregate demand

Price elasticities from the model are

ηjkt =
∂sjt
∂pkt

pkt
sjt

=

{
−αpjt(1− sjt) if j = k,

αpktskt otherwise
(60)

Cross elasticity

cross price elasticity between product j and k depends only on the prices and shares
of product k
let Coca Cola = product j; Pepsi Cola = product k; and Orange Cola = product l
if the price of Pepsi Cola increases by 1%, then ceteris paribus, the market shares of
Coca-Cola and Orange Cola will increase by the same proportion even though Coca
Colas and Pepsi Cola are more like each other (blue bus/red bus) compared to
Orange Cola (car)
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LOGIT DEMAND MODEL
ELASTICITIES AND SUBSTITUTION PATTERNS

IIA has implications for own and cross elasticities estimated via logit specification for the
aggregate demand

Price elasticities from the model are

ηjkt =
∂sjt
∂pkt

pkt
sjt

=

{
−αpjt(1− sjt) if j = k,

αpktskt otherwise
(60)

Own elasticity

often market shares (when there are many differentiated products) are small
own elasticity will be roughly proportional to the price of the product
(ηjjt ≈ −αpjt because (1− sjt) ≈ 1)
if price increases, sensitivity to prices also increases – but people who buy more
expensive products may in fact be less price sensitive compared to those who buy
less expensive products
if as the price increases, so does elasticity, it implies that the markups for
cheaper-priced products will be larger than those with higher priced products
(price-cost margin inversely related to own elasticities) – markups are higher for
cheaper-priced generics compared to the blockbuster patented?
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LOGIT DEMAND MODEL
ELASTICITIES AND SUBSTITUTION PATTERNS

If we compute a logit model on the same simulated data, the elasticity matrix
(from 2SLS) at the sample average value of prices and shares for the first 11
drugs look as follows

Notice something odd in the columns?
look again at the formula for cross-price elasticity between drugs j and k –
ηjk = αpktskt ... the formula does not depend on j
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LOGIT DEMAND MODEL
ESTIMATION DETAILS

Despite the earlier noted shortcomings, logit may be ok in some situations – even if not,
it’s easy to estimate and can be a starting point for more elaborate models

If we have aggregate sales data (quantities and prices), along with product characteristics,
equation (58) can be estimated by defining the dependent variable yjt as
yjt = ln(sjt)− ln(s0t)

To start, we need to estimate the share of the outside good – done by first defining the
(potential) size of the market

Examples

Bresnahan et al (1997) define it as the total number of office-based employees
BLP define it as the total number of households
Nevo (2001) defines the potential size of the market as one bowl of cereal per day
per person
In the example of ADHD drugs considered earlier, one could define it as a 12-hr
day-long coverage of a standard dose of ADHD drug – 3 × 30mg strength of Ritalin
IR (a 30mg pill covers about 4hrs of a day) which can be multiplied by a base line
candidate population, say 10% of all school-aged children (current ADHD
prevalence rates of whom only 69% are given any ADHD drugs), and a smaller
proportion of the older population
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LOGIT DEMAND MODEL
ESTIMATION DETAILS

Thus, first define the potential size of the market Mt

Next, based on the observed values of q1t, . . . , qJt, define the shares of the ‘inside’ goods
s1t, . . . sJt relative to the market size as

sjt = qjt/Mt j = 1, . . . , J for all t = 1, . . . , T. (61)

Then, the share of the outside good per market is just

s0t = 1−
J∑
j=1

sjt ∀t (62)

With these definitions in place, can estimate the equation (58) (reproduced below)

ln(sjt)− ln(s0t) = δjt ≡ α(−pjt) + xjtβ + ξjt, (58)

via linear regression methods — in fact can estimate the equation with data from just one
market
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LOGIT DEMAND MODEL
ESTIMATION DETAILS

With these definitions in place, can estimate the equation (58) (reproduced below)

ln(sjt)− ln(s0t) = δjt ≡ α(−pjt) + xjtβ + ξjt, (58)

via linear regression methods — in fact can estimate the equation with data from just one
market

let y′t = (y1t, y2t, . . . , yJt) be a row vector (for market t) given by
y′t = ([ln s1t − ln s0t] , [ln s2t − ln s0t] , . . . , [ln sJt − ln s0t]) so that yt is a column vector of
length J
let p′t = (p1t, . . . , pJt) and ξ′t = (ξ1t, . . . , ξJt) be row vectors with J entries for the tth market
since xjt is a row vector of observable characteristics of product j in market t, i.e.,
xjt = (x1jt, x2jt, . . . , xKjt), thus let X′t = (x′1t,x

′
2t, . . . ,x

′
jt, . . . ,x

′
Jt) so that Xt is a J ×K

matrix, such that each row is itself a k dimensional vector of observable product characteristics

Then (58) can be written in ‘long’ form and even estimated with observations from one
market t

yt = (ln sjt − ln s0t) = α(−pt) + Xtβ + ξt ≡ δt
y1
y2
...
yJ


t

=


ln s1 − ln s0
ln s2 − ln s0

...
ln sJ − ln s0


t

= α


−p1
−p2

...
−pJ


t

+


x11 x12 . . . x1K
x21 x22 . . . x2K

...
xJ1 xJ2 . . . xJK


t


β1
β2
. . .
βk

+


ξ1
ξ2
...
ξJ


t

(63)
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LOGIT DEMAND MODEL
ESTIMATION DETAILS

Data from multiple markets can be vertically ‘stacked’
y = α(−p) + Xβ + ξ ≡ δ


y11
y21

.

.

.
yJ1


.
.
.
y1t
y2t

.

.

.
yJt


.
.
.

y1T
y2T

.

.

.
yJT





=




ln s11 − ln s01
ln s21 − ln s01

.

.

.
ln sJ1 − ln s01


.
.
.

ln s1t − ln s0t
ln s2t − ln s0t

.

.

.
ln sJt − ln s01


.
.
.

ln s1T − ln s0T
ln s2T − ln s0T

.

.

.
ln sJT − ln s0T





= α




−p11
−p21

.

.

.
−pJ1


.
.
.

−p1t
−p2t

.

.

.
−pJt


.
.
.

−p1T
−p2T

.

.

.
−pJT





+




x111 x121 . . .x1K1
x211 x221 . . .x2K1

.

.

.
xJ11xJ21. . .xJK1


.
.
.

x11t x12t . . .x1Kt
x21t x22t . . .x2Kt

.

.

.
xJ1txJ2t. . .xJKt


.
.
.

x11T x12T . . .x1KT
x21T x22T . . .x2KT

.

.

.
xJ1T xJ2T . . .xJKT






β1
β2
. . .
βk

 +




ξ11
ξ21

.

.

.
ξJ1


.
.
.
ξ1t
ξ2t

.

.

.
ξJt


.
.
.
ξ1t
ξ2t

.

.

.
ξJt




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LOGIT DEMAND MODEL
INSTRUMENTS AND DUMMY VARIABLES

As discussed earlier, very likely that cov(pjt, ξjt) 6= 0

As before, one needs to find instruments that are correlated with price but not with
any of the unobserved product characteristics
See the earlier discussion on various instruments (Hausman, BLP, etc.)

Regardless of the instruments used, a first approach to consistent estimation would be to
estimate a fixed effects model with dummies for products (and markets)

Requires that data be available from multiple markets
Thus, with data available from multiple markets, one can estimate via OLS

ln(sjt)− ln(s0t) = δjt = α(−pjt) + xjtβ + ξj + ξt + ∆ξjt (64)

where ξj is the brand fixed effect and ξt is the market fixed effect
Identifying assumption for OLS estimation is

E(∆ξjtpjt|xjt) = 0 (65)

101 / 215



LOGIT DEMAND MODEL
INSTRUMENTS AND DUMMY VARIABLES

Thus, with data available from multiple markets, one can estimate via OLS

ln(sjt)− ln(s0t) = δjt = α(−pjt) + xjtβ + ξj + ξt + ∆ξjt (64)

A brand-specific dummy variable captures all the observed characteristics of the product
that do not vary across markets, as well as the product-specific mean of the unobserved
characteristics, i.e., xjβ, where, note the missing market subscript of t from the vector x

Thus, the correlation between prices and brand-specific mean of unobserved quality is
fully accounted for and does not require an instrument

Once brand-specific dummy variables are included in the regression, the error term now is
just the market-specific deviation from the mean of the unobserved characteristics, and
may still require the use of instruments if the condition in equation (65) is not true
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LOGIT DEMAND MODEL
INSTRUMENTS AND DUMMY VARIABLES

Thus, with data available from multiple markets, one can estimate via OLS

ln(sjt)− ln(s0t) = δjt = α(−pjt) + xjtβ + ξj + ξt + ∆ξjt (64)

Similarly, if the mean unobserved quality – where the mean is now across all brands – is
different by markets, then it too is fully accounted for by the market dummies

If the subscript t for the markets is in the context of time periods, then this could be
because of the unobserved quality of all products are improving over time (think
computer quality over time)

If the subscript t is in the cross-sectional setting, then this may or may not make much
sense, since adding such dummies to the equation, the researcher is effectively arguing
that the unobserved quality components of all brands in, Hooker, OK, are higher than
those in Boring, OR

This may be true if the products under study require some additional local input for
providing the product (radio channels with local DJs and ads), or if shipping from
long-distance affects the quality of all products (fresh food), but not if they are
centrally produced (RTE cereals) and shipping does not impact quality
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LOGIT DEMAND MODEL
INSTRUMENTS AND DUMMY VARIABLES

Two objections to the use of brand dummies

Use of brand dummies increases the number of parameters to be estimated by J (rather
than by J2) – may not be too serious an issue if the number of markets is large

A potentially more serious difficulty is that the coefficients β cannot be identified if
observed characteristics do not vary by markets

Nevo (2001) points out that in fact they can be recovered using minimum distance procedure by regressing
the estimated brand dummy variables on the observed characteristics
Let bt be the J × 1 vector of brand dummies and let Xt be the J ×K matrix of observed product
characteristics and ξt be the J × 1 vector of unobserved product qualities, neither of which varies by
markets

Let also b̂ be the estimated values of coefficients (J × 1) of the brand dummies and V̂ −1
b their estimated

J × J variance-covariance matrix, both of which are available from initially estimating equation (64)

Then, the estimates of β and ξ in equation

bt = Xtβ + ξt, (66)

can be recovered via the GLS estimator

β̂ = (X′tV̂
−1
b Xt)

−1X′tV̂
−1
b b̂t, and ξt = b̂t −Xtβ̂ (67)

where the latter is just the calculated value of the residual term from the regression
above
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LOGIT DEMAND MODEL
ESTIMATION EXAMPLE

Simulated dataset for the same 17 drugs also available as in the ‘long’ format –
long here means that within each county, the data – shares, prices, other
characteristics, etc. – are set as 17 rows as opposed to 17 different columns per
variable – download simulateddrugs02.sas7bdat and
simulateddrugs02.dat

The accompanying SAS program estimate-LOGIT-ver01.sas shows
how to estimate the model in SAS using OLS/2SLS – it also computes the
elasticity matrix at the sample mean — you can do the same in STATA (I will not
do that here as I will shortly introduce a special package mergersim for
STATA that does all that plus more)
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STANDARD LOGIT
ESTIMATION EXAMPLE

Partial code (define outside good share and shares)
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STANDARD LOGIT
ESTIMATION EXAMPLE

Partial code (define outside good share and shares)
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STANDARD LOGIT
ESTIMATION EXAMPLE

Partial output
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Partial output (2SLS vs OLS)
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NESTED LOGIT
RELAXING THE IID RESRTRICTION

The IIA problem in logit arose from the iid structure of the error terms

Particularly, while consumers have different rankings of the products, these differences
arise only due to the iid shocks to the error term εnjt

One solution to this problem is to make the random shocks to the utility correlated across
products by generating correlations through the error term

An example is the nested logit model in which products are grouped and εnjt is
decomposed into an iid shock plus a group specific component which results in a
correlation between products in the same group

The basic idea is to relax the IIA by grouping products (similar to the grouping idea in
multilevel budgeting/AIDS we saw earlier), but within each group, we have a standard
logit model, and products in different groups have less in common and are not good
substitutes
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NESTED LOGIT
UTILITY FUNCTION AND MARKET SHARES

Let the utility for consumer n for product j in group g be

unjt = δjt + ζngt(σ) + (1− σ)εnjt, (68)

where
δjt = α(−pjt) + xjtβ + ξjt is the mean utility for product j common to all consumers (as before)
εnjt is (still) the person-specific iid random shock with extreme value distribution
but ζngt is the person-specific shock that is common to all products in group g
The distribution of the group-specific random variable ζngt depends on the parameter σ so that
ζngt(σ) + (1− σ)εnjt is extreme value
If σ approaches zero, the model is reduced to that of the simple logit case discussed earlier while if it
approached one, only the nests matter

Gives a closed form that can be estimated using linear estimation methods

ln(sjt)− ln(s0t) = α(−pjt) + xjtβ + σ ln(sjt/sgt) + ξjt (69)

The additional term ln(sjt/sgt) is the share of product j in group g

All previous issues (define outside good, use of dummies, instruments etc.) apply here as
well

One difference from the previous case is that even if prices are exogenous, the term
ln(sjt/sgt) is endogenous and we need some instrumental variable for it
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NESTED LOGIT
UTILITY FUNCTION AND MARKET SHARES

A significant refinement over the model comes from the nested logit variant – groups of
products that are close substitutes are placed in nests – and consumers choose the nest and
then the specific product

ln(sjt/s0t) = α(−pjt) + xjtβ + σ ln(sjt/sgt) + ξjt

The additional term ln(sjt/sgt) is the share of product j in group g (and the term is
endogenous as is often the price variable)

The figure shows a nesting choice of 28 across four molecules, where the patient/doctor
first chooses a molecule and then the brand
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NESTED LOGIT
UTILITY FUNCTION AND MARKET SHARES

We can refine this further to second-level nesting (or more, but becomes difficult)

ln(sjt/s0t) = α(−pjt) + xjtβ + σ1 ln(sjt/shgt) + σ2 ln(sht/sgt) + ξjt

The additional terms ln(sjt/shgt) and ln(sht/sgt) are the shares of product j in
subgroup h of group g and of group h in group g

The figure shows a nesting choice of 28 across four molecules and two formulations,
where the patient/doctor first chooses a molecule, then a formulation and then the brand
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NESTED LOGIT
ESTIMATION EXAMPLE – MERGERSIM TOOL

Such a model can be estimated and used in merger simulations with STATA’s user written
command mergersim by Björnerstedt and Verboven (2014)

In a nutshell

Easy to use add-in for STATA

Estimates a logit, nested logit, or double nested logit (OLS or IV) using standard
STATA commands for linear regressions with or without fixed effects

By declaring product id and firm id variables, initialization of the program
automatically creates ownership matrix Θ0 in the background, and using estimates
from the logit model and observed shares and prices, creates the markup Ω0 matrix

Post estimation gives estimates of marginal costs and allows for mergers between
any number of firms – also allows for the computation of minimum required
efficiencies per product for price not to increase after the merger

Example/demo follows ...
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NESTED LOGIT
ESTIMATION EXAMPLE – MERGERSIM TOOL

Sample sales data by the authors from the European car market

Markets: Countries-year combination – Belgium, France, Germany, Italy, UK and
years 1970-1999
Products: 351 (for instance Alpha Romeo 33 is a distinct product from Alpha
Romeo 75); brands 38
Firms: 26
Nests: upper nest is segment – subcompact, compact, intermediate, standard, and
luxury and lower nest is domestic which takes values 1/0 if a firm is domestic or
foreign in a given market (for instance, Fiat is domestic in Italy and foreign in other
countries)
Price is measured in 1,000 Euro (1999 values) and quantity is new car registrations
The data set includes several other product characteristics such horsepower, fuel
efficiency, height, width
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NESTED LOGIT
ESTIMATION EXAMPLE – MERGERSIM TOOL

The program runs in four parts

Step 1: Initialize the program (mergersim int) – this entails declaring variables
firm and product id, price, and quantity variables, variables that capture the nest, and
variables for potential market size (so shares can be computed)
Step 2: Estimate the logit or nested logit model using standard STATA commands
(including IV-based commands) – the previous step has already created all the
variables necessary for estimating the model
Step 3: Compute pre-merger variables (mergersim market) – this step
computes the mean gross valuation of each product δjt ≡ xjtβ + ξjt, own and
cross elasticities, and marginal costs
Step 4: Simulate a merger (mergersim simulate) – performs a merger
simulation where a user specifies which firms are merging and outputs results

Selected inputs (code snippets) and outputs follow
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NESTED LOGIT
ESTIMATION EXAMPLE – MERGERSIM TOOL

Step 1 – (mergersim int)

Set the size of the potential market to 1/4 of the population and run step 1
initialization
population variable is pop, and market size variable is MSIZE
price variable is price, quantity is qu, and firm id is firm
nesting variables are segment and domestic
the product id is co, and is declared as part of STATA’s panel declaration command
(xtset) along with the other dimension being yearcountry
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NESTED LOGIT
ESTIMATION EXAMPLE – MERGERSIM TOOL
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NESTED LOGIT
ESTIMATION EXAMPLE – MERGERSIM TOOL

Step 2 – (estimate parameters of nested logit model )
In this simple example, we used a fixed effects linear model via xtreg (where the
fixed effects are over the product ids) but should be run using ivreg or xtivreg
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NESTED LOGIT
ESTIMATION EXAMPLE – MERGERSIM TOOL

Step 3 – (back out marginal cost etc.) (here we do so using only 1998 data)
– output part 1
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NESTED LOGIT
ESTIMATION EXAMPLE – MERGERSIM TOOL

Step 3 – (back out marginal cost etc.) (here we do so using only 1998 data)
– output part 2
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NESTED LOGIT
ESTIMATION EXAMPLE – MERGERSIM TOOL

Step 4 – (mergersim simulate) Simulate a merger between GM (seller=15) and
VW (buyer=26) and looks at effects in Germany 1998 – output part 1
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NESTED LOGIT
ESTIMATION EXAMPLE – MERGERSIM TOOL

Step 4 – (mergersim simulate) Simulate a merger between GM (seller=15) and
VW (buyer=26) and looks at effects in Germany 1998 – output part 2
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NESTED LOGIT
ESTIMATION EXAMPLE – MERGERSIM TOOL

Step 4 – (mergersim simulate) Simulate a merger between GM (seller=15) and
VW (buyer=26) and looks at effects in Germany 1998 – output part 3

124 / 215



NESTED LOGIT
ESTIMATION EXAMPLE – MERGERSIM TOOL

The mergersim tool also allows a user to explore the effects of

efficiencies (by changing marginal costs)
remedies such as divestitures (via adjusting ownership matrix for other products by
the merging parties)
conduct parameter (allows for partial collusion pre-merger)

The tool also allows for calibration where users can set the values of α, σ1, σ2 and
computation of minimum required efficiencies so that prices do not increase

As such can be used as an initial or additional screen
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GENERALIZED METHOD OF MOMENTS
BRIEF REVIEW

Say we have an additional set of exogenous variables zt that are correlated with xt but not
with the error terms so that E[ut|zt] = 0

Then, E[(yt − xtβ)|zt] = 0, and as before, we can multiply zt with the residual terms to
get K unconditional population moment conditions

E[z′t(yt − xtβ)] = 0 (70)

Then the MM estimator solves the sample moment conditions given by

1

T

T∑
t=1

z′t(yt − xtβ) = 0 (71)

If dim(z) = K, then this yields the MM estimator which is just the IV estimator

β̂MM = (
∑
t

z′txt)
−1
∑
t

z′tyt = (Z′X)−1Z′y (72)
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GENERALIZED METHOD OF MOMENTS
BRIEF REVIEW

If however, dim(z) > K, (more potential instruments than the original number of
regressors) then there is no unique solution – more moment conditions than the number of
parameters to be estimated

We can use the GMM estimator which chooses β̂ so as to make the vector
T−1∑T

t=1 z′t(yt − xtβ) as small as possible using quadratic loss

Thus find β̂GMM which minimizes the function

Q(β) =

[
1

T

∑
t

z′t(yt − xtβ)

]′
Φ

[
1

T

∑
t

z′t(yt − xtβ)

]
(73)

where Φ is a dim(z)× dim(z) weighting matrix

In matrix notation define y = Xβ + u (where y and u are T × 1, X is T ×K and β is
K × 1 as before), and let Z be T ×R matrix, then

∑T
t=1 z′t(yt − xtβ) = Z′u and (73)

becomes

Q(β) =

[
1

T
(y −Xβ)′Z

]
Φ

[
1

T
Z′(y −Xβ)

]
(74)

where Φ is a R×R full rank symmetric weighting matrix
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GENERALIZED METHOD OF MOMENTS
BRIEF REVIEW

First order conditions, ∂Q(β)/∂β = 0 for the linear IV case are

∂Q(β)

∂β
= −2

[
1

T
X′Z

]
Φ

[
1

T
Z′(y −Xβ)

]
= 0 (75)

Then the GMM linear IV estimator and its variance are

β̂GMM =
(
X′ZΦZ′X

)−1
X′ZΦZ′y

V(β̂)GMM = T
(
X′ZΦZ′Z

)−1
(
X′ZΦŜΦZ′X

) (
X′ZΦZ′X

)−1 (76)

where Ŝ is a consistent estimate of

S = plim
1

T

∑
i

∑
j

[
z′iuiujzj

]
(77)
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GENERALIZED METHOD OF MOMENTS
BRIEF REVIEW

Different choices of the weighting matrix Φ lead to different estimators

If the model is just identified (R = K) and the matrix X′Z is invertible, then the choice
of the weighting matrix Φ does not matter as the GMM estimator is just the IV estimator:

β̂GMM =
(
X′ZΦZ′X

)−1
X′ZΦZ′y

= (Z′X)
−1

Φ−1(X′Z)
−1

(X′Z)ΦZ′y

= (Z′X)
−1

Z′y = β̂IV

(78)

If R > K, and the errors are homoscedastic, then Φ = (T−1Z′Z)−1 and
Ŝ−1 =

[
s2T−1Z′Z

]
leads to the usual 2SLS estimator

β̂GMM =
(
X′PzX

)−1 (
X′Pzy

)
= β̂2SLS

V(β̂GMM) = s2
(
X′Z(Z′Z)−1Z′X

)−1

where Pz = Z(ZZ′)
−1

Z′ and s2 = (T −K)−1
∑
t

û2
t

(79)
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GENERALIZED METHOD OF MOMENTS
BRIEF REVIEW

Alternatively, if errors are heteroscedastic, then instead we can use

V(β̂GMM) = T
(
X′Z(Z′Z)−1Z′X

)−1
(
X′Z(Z′Z)−1Ŝ(Z′Z)−1Z′X

) (
X′Z(Z′Z)−1Z′X

)−1

and Ŝ = T−1
∑
t

û2
tztz

′
t.

(80)

The optimal weighting matrix (optimal in the sense of efficiency/smallest variance) is one
which is proportional to the inverse of S

The optimal GMM two-step estimator (for the linear IV case) is when Φ = Ŝ−1

β̂OGMM =
(
X′ZŜ−1Z′X

)−1

X′ZŜ−1Z′y (81)

Step 1: Use 2SLS as the first step to estimate β̂ and then compute residuals as in the heteroscedastic case
above
Step 2: Construct the Ŝ−1 and then use it in (81) to compute the estimator

Variance is given by

V(β̂OGMM) = T
(
X′ZŜ−1Z′X

)−1
(82)
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GENERALIZED METHOD OF MOMENTS
BRIEF REVIEW

This approach extends easily to the general case with other moment conditions
Let θ be a q × 1 vector of parameters and h(w,θ) be an r × 1 vector function such that
at the true value of the parameter θ0, there are r moment conditions (r > q) give by

E [h(wt,θ0)] = 0 (83)

where the expectations are not zero if θ 6= θ0
the vector wt includes all observable variables, including yt,xt and, zt

Then the GMM objective function (equivalent of (73)) is

Q(β) =

[
1

T

∑
t

h(wt,θ)

]′
Φ

[
1

T

∑
t

h(wt,θ)

]
(84)

and the corresponding first-order conditions are

∂Q(β)

∂β
=

[
1

T

T∑
t

∂ht(θ̂)′

∂θ

]
Φ

[
1

T

T∑
t

ht(θ̂)

]
= 0

where ht(θ) = h(wtθ)

(85)

Note that If ht(θ) = z′t(yt − xtβ) = z′tut then ∂h/∂β′ = −z′txt and the earlier results
of linear IV follows
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GENERALIZED METHOD OF MOMENTS
BRIEF REVIEW

GMM also extends to non-linear models, where the error term ut may or may not be
additively separable

For instance, ut = yt − g(xt;θ) where g(·) is some nonlinear function but the error term
is additively separable, or non-separable so that ut = g(yt,xt;θ)

If E(ut|xt) 6= 0 but we have instruments available so that E(ut|zt) = 0, then the moment
conditions are E(z′tut) = 0

The GMM estimator minimizes the objective function

Q(β) =

[
1

T
u′Z

]
Φ

[
1

T
Z′u

]
(86)

Unlike the linear case, the first-order conditions do not give closed forms for the
estimators
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BACK TO LOGITS
GMM ESTIMATION

Earlier saw that standard logit can be estimated as a linear equation when the dependent
variable is defined as yjt ≡ ln sjt − ln s0t and the equation is given as
yjt = α(−pjt) + xjtβ + ξjt

When the price is correlated with the unobserved heterogeneity term ξjt, so that
E(p, ξ) 6= 0 and we have a set of instruments such that E(Zξ) = 0, then we can use the
GMM/IV methods described in the earlier section to estimate the parameters of the
equation

The linear equation arose out of Berry’s (1994) inversion trick

Useful to work through this again for extending the method to random coefficients model
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BACK TO LOGITS
GMM ESTIMATION

Let the observed shares be given by s so that st = (s0t, s1t, . . . , sJt) where, as before,
s0t = 1−

∑J
j=1 sjt

Let also θ1 ≡
[
α β′

]′) and let model predicted market shares in equation (57) be given
by s̃ so that s̃t = (s̃0t, s̃1t, . . . , s̃Jt)

Given a value of θ1, can compute the model predicted shares as

s̃jt =
exp(δjt)

1 +
∑J
j=1 exp(δjt)

(57)

Thus, may want to use NLS methods to find θ1 to minimize the distance between
predicted and observed market shares

min
θ1

J∑
j=1

[sjt − s̃jt(α,β, ξ1t, ξ2t, . . . , ξJt)]2 (87)

The econometric error terms ξt – unobserved product qualities – enter the predicted
market share and are not additively separable. Hence, non-linear least squares methods
will not give consistent estimates even if prices were not endogenous
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BACK TO LOGITS
GMM ESTIMATION

Assume that we have a set of M instruments given by matrix Z with dimensions
JT ×M (the jtth row is given by zjt = (z

(1)
jt , z

(2)
jt , . . . , z

(M)
jt )) which are uncorrelated

with error terms in the utility model ξjt

Then the M moment conditions are given by E(z′jtξjt) = 0

The key insight comes from the fact that the error terms enter the mean utility linearly
(δjt = α(−pjt) + xjtβ + ξjt), and that they only enter the mean utility and hence one
can separate out the ξjt terms to compute the moment conditions above

1

J

∑
j

z
(m)
jt ξjt =

1

J

∑
j

z
(m)
jt (δjt − xjtβ + αpjt) (88)

Thus want to estimate the parameters α,β that minimize the sample moment conditions
(or rather their weighted sum of squares)

But since we cannot observe δjt we cannot proceed as is

Berry (1994) suggests a two-step approach: first obtain an estimate of δjt, – call it δ̂jt –
and insert it into the moment conditions above, and second, search for values of α,β that
minimize the weighted sum of squares of these moment conditions
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(1) Figure out the values of δjt

(A) If we normalize δ0t = 0 and equate the observed shares to the model predicted
shares, then we have J non-linear equations per market – see logit share equation
(57) – in J unknowns

s1t = s̃1t(δ1t, . . . , δJt)

s2t = s̃2t(δ1t, . . . , δJt)

...

sJt = s̃jt(δ1t, . . . , δJt)

(89)

(B) If we can invert this system, we can solve for δ1t, δ2t, . . . , δjt as a function of
observed shares s1t, s2t, . . . , sjt.

(C) Thus, we now have δ̂jt ≡ s̃−1
jt (s1t, s2t, . . . , sJt), J numbers per market which we

can use to carry out step 2 (in the simple logit case, δ̂jt = ln(sjt)− ln(s0t))
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(2) With the estimated values of δjt, use GMM to estimate parameters (in this case, α and β)
so as to minimize (88).

(A) Recall that δj is the mean utility of product j defined linearly as
δjt = α(−pjt) + xjtβ + ξjt for all j,

δ1t = α(−p1t) + x1tβ + ξ1t

δ2t = α(−p2t) + x2tβ + ξ2t

...

δJt = α(−pJt) + xJtβ + ξJt

(90)

(B) We can now use the estimated values of δ̂j to calculate the sample moments

1

J

∑
j

z
(m)
jt ξjt =

1

J

∑
j

z
(m)
jt (δ̂jt − xjtβ + αpjt) (91)

minimize these to calculate the values of α,β
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In step (1a) above, we equated observed market shares to model predicted market shares

In the case of logits, the model predicted market shares take the closed-form (57)
given by s̃jt = exp(δjt)/

[
1 +

∑J
j=1 exp(δjt)

]
In other cases, there will be no closed form available to compute the
model-predicted market shares and we will need to resort to numerical simulation
methods to estimate the model-predicted shares
In fact, these may be functions of additional parameters (call them θ2) – thus,
equations (89) will be of the form

sjt = s̃jt(δ1t, . . . , δJt,θ2) (92)

In steps (1b/1c), we ‘inverted’ these equations to solve for δ̂jt
In the case of logit, an analytical solution was available since δjt = ln sjt − ln s0t
More generally, these equations are nonlinear and need to be solved numerically
Berry/BLP suggest a contraction mapping (and prove that it converges) for δt given
by

δh+1
t = δht +

[
ln(st)− ln(s̃t(δ

h
t ;θ2))

]
(93)

where st(·) is the observed market share, s̃t(·) is the model predicted market share
at mean utility δht at iteration h and ||δh+1

t − δht || is below some tolerance level
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To sum up, Berry’s (1994) two-step GMM approach with a matrix of instruments Z is as
follows:
(1) Compute δ̂jt

Without loss of generality, subsume pjt within xjt as just another column (a special
attribute of product J), and rather than introduce new (unnecessary) notation, redefine
xjt =

[
−pjt xjt

]
– similarly, redefine matrix X to be inclusive of the price vector so

that X =
[
p X

]
. Also, let st be the vector of observed shares and θ1 =

[
α β′

]′
Conveniently, δ̂jt = ln(sjt)− ln(s0t) (in the case of simple logit) and
δ̂ = ln(s)− ln(s0)

Then ξjt(θ1) = δ̂jt(st)− xjtθ1 – and in matrix notation, ξ(θ1) = δ̂ −Xθ1

(2) Define the moment conditions as E(Z′ξ(θ1)) = 0

Next, min
θ1

ξ(θ1)′ZΦZ′ξ(θ1) where Φ = (E[Z′ξξ′Z])−1

In the case of logit, we have an analytical solution – see equation (81) in the GMM
section, and replace y in that equation with δ̂:
θ̂1 = (X′ZΦZ′X)−1X′ZΦZ′δ̂

Since we don’t know Φ, we start with Φ = I or Φ = (Z′Z)−1, get an initial estimate
of θ1, use this to get residuals, and then recompute Φ = (E[Z′ξξ′Z])−1 to get the new
estimates of θ1

We will use this 2 step approach explicitly in the next model
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Let the utility be given by

unjt = αn(yn − pjt) + xjtβn + ξjt + εnjt, where

n = 1, . . . , N, j = 0 . . . , J, t = 1 . . . , T
(94)

where [
αn
βn

]
=

[
α
β

]
︸︷︷︸
θ1

+ Πdn + Σνn︸ ︷︷ ︸
θ2={Π,Σ}

=

[
α
β

]
+

[
Πα

Πβ

]
dn +

[
Σα

Σβ

] [
νnα νnβ

] (95)

and where

dn ∼ Fd(d) νn ∼ Fν(ν) (96)

note that the person-specific coefficients are equal to the mean value of the parameters θ1 =
[
α β′

]′,
plus deviation from the mean due to a second set of parameters θ2 = {Π,Σ} and given by Πdn + Σνn
each consumer is assumed to have a fixed set of coefficients {αn,βn}
we do not impose the restriction that taste parameters {α,β} – the marginal utilities of product
characteristics – are the same for all consumers
the person-specific coefficients are modeled as a function of underlying common parameters {Π and Σ}
that are multiplied to the person-specific characteristics (dn, νn), each of which is random draws from an
underlying mean zero population with distribution functions Fd(d) and Fν(ν)
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Let πab and σef be the terms of Π and Σ respectively and let (dn = (d1n, . . . , d5n)′) be
the five demographics of the nth person recorded as deviation from the population mean
values – then

αn = α +π11d1n + π12d2n + . . .+ π15d5n

+σ11v1n + σ12v2n + . . .+ σ14v4n

βkn = βk +πk1d1n + πk2d2n + . . .+ πk5d5n

+σk1v1n + σk2v2n + . . .+ σk4v4n

(97)

If there are D person specific observed characteristics (dn = (d1n, . . . , dDn)′) and k − 1
product characteristics, then Π is a k ×D and Σ is a k × k matrix of parameters, i.e.,[

αn
βn

]
︸ ︷︷ ︸
k×1

=

[
α
β

]
︸︷︷︸
k×1

+ Πdn︸ ︷︷ ︸
k×D byD×1

+ Σνn︸︷︷︸
k×k by k×1

(98)

suppose there are three observed product characteristics (so k − 1 = 3)
five observed person-specific characteristics so that

[
α β′

]′ is a 4× 1 vector (the additional dimension
is for price) and dn is a 5× 1 vector
νn is also a 4× 1 vector – these are the person specific random error terms that provide part of the
deviation from the mean values of

[
α β′

]′
Then Π is 4× 5 matrix (20 parameters) and Σ is a 4× 4 matrix (16 parameters) and so the total number
of parameters affecting the utility function are 4 + 20 + 16 = 40
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If we insert (95) back into (94) and simplify, then the utility function can be decomposed
into three parts (or four, if we count αnyn term, but it drops out later on)

unjt = αnyn + δjt + µnjt + εnjt

where,

δjt = δ(xjt, pjt, ξjt;θ1) = α(−pjt) + xjtβ + ξjt

µnjt = µ(xjt, pjt,dn,νn;θ2) = (−pjt,xjt)(Πdn + Σνn)

(99)

Note the following

except for the µnjt term, which arises due to multiplication of (Πdn + Σνn) with
the observed product characteristics, the rest of the form is the same as in the logit
case
as before, αnyn will drop out of the model, δjt is the mean utility of product j and
is common to all consumers
µnjt + εnjt is the mean-zero heteroscedastic error term that captures the deviation
from the mean utility
it is this last composite error term µnjt + εnjt, that allows us to break away from the
IIA property
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Utility can be written as

unjt = αnyn + δjt + µnjt + εnjt

where,

δjt = δ(xjt, pjt, ξjt; θ1) = α(−pjt) + xjtβ + ξjt

µnjt = µ(xjt, pjt,dn, νn; θ2) = (−pjt,xjt)(Πdn + Σνn)

(99)

Recall that in the logit model, the IIA property was arising due to the independence of the
error terms εnjt

One way around this problem is to allow these error terms to be correlated across different brands – and in
principle, one can allow a completely unrestricted variance-covariance matrix for the shocks εnjt – leads to
the dimensionality problem (all pair-wise covariances between products and variances of each of the J
products)
The nested logit took a restricted version of this by imposing some structure on the error terms so that all
products within a group have a correlation between them but not with those in other groups

In the current context, we retain the iid extreme value distribution assumption on εnjt, but
the correlation among the choices is generated via the µnjt component of the composite
error term µnjt + εnjt

Correlation between the utility of different products is a function of both product and consumer attributes so
that products with similar characteristics will have similar rankings and consumers with similar
demographics will also have similar rankings of products (µnjt = (−pjt,xjt)(Πdn + Σνn))
Rather than estimate a large number of parameters of a completely unrestricted variance-covariance matrix
for εnjt, we need to estimate relatively fewer parameters θ1 = (α, β)′, θ2 = {Π,Σ}
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Utility of product j for two different consumers differs only by µnjt + εnjt (see (99) –
unjt = αnyn + δjt + µnjt + εnjt)

the δj term is the same for all consumers and αnyn is the same for all choices
hence the fact that one consumer chooses product j while another chooses product i must only be because
the two consumers differ in their product-specific idiosyncratic error terms µnjt + εnjt

Hence, we can describe each consumer as a tuple of demographic and product-specific
shocks (dn,νn, εn0t, εn1t, . . . , εnJt), which implicity defines the set of individual
attributes that choose product j given by

Ajt(xt,pt, δt(xt,pt;θ1);θ2) = {(dnt,νnt, εn0t, εn1t, . . . , εnJt) | unjt > unlt

∀ l = 0, 1, 2 . . . J, l 6= j}.
(100)

The market share of product j is the integral of the joint distribution of (d, ν, ε) over the
mass of individuals in the region Ajt,

sjt =

∫
Ajt

dF (d, ν, ε) =

∫
Ajt

dFd(d)dFν(ν)dFε(ε) (101)

where the second part follows only if we assume that the three random variables for a given consumer are
independently distributed
note also that set Ajt is only defined via the parameters θ2 = {Π,Σ}, since they were part of the µnjt
term, and not over the parameters θ1
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Unlike the logit case, the integral does not have a closed form

If we continue to assume that εnjt has iid extreme value distribution, then the probability
that a given individual ñ – with endowed values of d̃n and ν̃n, or equivalently with a
given value of µ̃njt – chooses product j, continues to have a closed logit form like the
equation 5.6 and in this case is given by

snjt =
exp(δjt + µ̃njt)∑J
j=0 exp(δjt + µ̃njt)

(102)

Since µnjt = µ(xjt, pjt,dn,νn;θ2), we can integrate individual probability over the
distribution of dn and νn to recover market share of product j

sjt =

∫
Ajt

snjtdFd(d)dFν(ν)

=

∫
Ajt

{ exp(δjt + µnjt)∑J
j=0 exp(δjt + µnjt)

}
dFd(d)dFν(ν)

(103)
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Price elasticities of market shares are given by

ηjkt =
∂sjt
∂pkt

pkt
sjt

=

{
− pjt
sjt

∫
Ajt

αnsnjt(1− snjt)dFd(d)dFν(ν) if j = k,
pkt
sjt

∫
Ajt

αnsnjtsnktdFd(d)dFν(ν) otherwise
(104)

where snjt =
exp(δjt+µ̃njt)∑J
j=0 exp(δjt+µ̃njt)

The main advantage of this model is that estimation requires estimation of a handful of
parameters (rather than the square of the number of parameters), elasticities do not exhibit
the problems noted earlier for the logit (own or cross-elasticities) and allows us to model
consumer heterogeneity rather than rely on a representative consumer

Compare to the earlier elasticities from the logit model

ηjkt =
∂sjt
∂pkt

pkt
sjt

=

{
−αpjt(1− sjt) if j = k,

αpktskt otherwise
(60)

Nothing comes for free ... now we must integrate the expression numerically
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Let x be some arbitrary random variable¶ with a probability distribution
f(x) = dF (x)/dx→ dF (x) = f(x)dx

then note that the integral –
∫
x · f(x)dx – is just the expected value of x, i.e.,

E[x] =
∫
x · dF (x)

the sample analog would be the weighted average of x given by x̄ =
∑
n xnPr(xn)

further, if all values are equally possible, then it is just the simple sample average
x̄ = (1/N)

∑
n xn

The idea carries over to any function g(x) defined over x such that

E[g(x)] =
∫
g(x) · dF (x)

and the sample analog would be g(x) =
∑
n g(xn)Pr(xn)

Thus, if we wanted to numerically evaluate the integral of g(x) with a known distribution
of x (i.e., evaluate

∫
g(x) · dF (x)), all we need to do is

take lots of draws of x from this known distribution
evaluate g(x) at each of these points
and then just take a simple average of all these values of g(x)
we will get a pretty good value of the integral by this method if we have taken
enough good draws of the random variable x

¶This x has nothing to do with the earlier characteristic vector xjt
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Consider the case where x is distributed between 0 and 3 such that the probabilities of
draws are

Pr(0 ≤ x < 1) = .45,
Pr(1 ≤ x < 2) = .10, and
Pr(2 ≤ x < 3) = .45

If we drew 100 random numbers from this distribution, we would expect about 45 of them
to be between 0 and 1, another 10 observations between 1 and 2, and 45 observations
between 2 and 3

If that were the case, we could safely evaluate g(x) at each of these 100 random
draws and take their average to compute E[g(x)] =

∫
g(x) · dF (x)

If on the other hand, we find that the drawing sequence (algorithm) is such that for
the first 100 draws, we have 1/3 of observations from each of the three regions, then
with just 100 draws, average values of g(x) will give a very poor (if not outright
wrong) approximation to the integral in question

There is a large literature on drawing from different types of random distributions, for a
good review of basic techniques, see chapter 9 in Train
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To compute the integral in (103), we need to know the distribution functions Fd(d) and
Fν(ν) and draw from these distributions

Drawing from Fd(d)

note that dn is the vector of demographics for consumer n (income, family size, age, gender, etc.)
one way to proceed is to make use of other data sources, such as the census data, to construct a
non-parametric distribution. We can then take random draws from this distribution to compute the integral
above
in practice one can directly drawN number of consumers – whereN is a reasonably large number – from
each of the t markets and record their demographic information
thus, let us assume that dn is a 5× 1 vector of demographics, and that we have obtainedNs random draws
from each market and recorded the values of these demographics

Drawing from Fν(ν)

recall that if xjt is a vector of three observed characteristics (k − 1 = 3) for product j, then for each
person, νn is a 4× 1 (or more generally k × 1) vector of random error terms that provide part of the
deviation from the mean values of

[
α β′

]′
researchers often specify Fν(ν) as standard multivariate normal and takeN draws per market to obtain νn
let us again assume that with the help of a good random number generator, we have takenNs such draws
per market and have recorded a series of 4× 1 vectors for each person
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Given the values of the parameters θ2 = {Π,Σ}, a value of mean utility δjt and Ns
random values of dn and νn, the predicted market share of good j can be computed using
the smooth simulator as the average value of snjt over the Ns observations,

s̃jt =

∫
Ajt

snjtdFd(d)dFν(ν)

=
1

Ns

Ns∑
n

snjt =
1

Ns

Ns∑
n

{ exp(δjt + µnjt)∑J
j=0 exp(δjt + µnjt)

}
where µnjt = (−pjt,xjt)(Πdn + Σνn)

(105)

150 / 215



RANDOM COEFFICIENTS LOGIT
DISTRIBUTIONS OF νn AND PARAMETERS θ2

Recall from earlier example (5 demographics and 3+1 product characteristics), there were
40 parameters to estimate

Data may not allow estimation of such a rich set of parameters

BLP does not use individual demographics to create variation in person specific
coefficients
equivalently, the k× d matrix Π consists of zeros and the variation in

[
αn β′n

]′ is
only due to Σνn
Nevo sets only some of the terms of Π to zero and estimates the other coefficients
Often researchers set Σ as a diagonal matrix and estimate only the leading terms of
this matrix
this is not as restrictive as it may appear at first pass
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To understand the logic of choosing parameters that are set to zero, and the implications,
consider a very simple example where there is only one observed characteristic of each
product, plus price, so that

[
αn β′n

]′ is just a 2× 1 column vector instead of k × 1

just to be clear, in what follows in the next couple of paragraphs, think of βn and β as just 1× 1 scalars
even though I continue to write them in bold font for vectors
Further, suppose that all the elements of Π are zero (again, only to simplify the algebra as the main idea
carries through with or without Π in the utility function)

Then sans the Πdn term[
αn
βn

]
=

[
α
β

]
+ Σνn =

[
α
β

]
+

[
σ11 σ12

σ21 σ22

] [
ν1n
ν2n

]
(106)

Since νn is a mean zero error term, then

αn = α+ σ11ν1n + σ12ν2n

βn = β + σ21ν1n + σ22ν2n

E[αn] = α E[βn] = β

Var[αn] = σ2
11Var[ν1n] + 2σ11σ12Cov[ν1n, ν2n] + σ2

12Var[ν2n]

Var[βn] = σ2
21Var[ν1n] + 2σ21σ22Cov[ν1n, ν2n] + σ2

22Var[ν2n]

(107)
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Since νn is a mean zero error term, then

αn = α+ σ11ν1n + σ12ν2n

βn = β + σ21ν1n + σ22ν2n

E[αn] = α E[βn] = β

Var[αn] = σ
2
11Var[ν1n] + 2σ11σ12Cov[ν1n, ν2n] + σ

2
12Var[ν2n]

Var[βn] = σ
2
21Var[ν1n] + 2σ21σ22Cov[ν1n, ν2n] + σ

2
22Var[ν2n]

(107)

Implications of setting the off-diagonal terms in Σ to zero: if σ12 = σ21 = 0, then
αn is a deviation from the mean value of α and the deviation is determined only by a random shock ν1n
multiplied by a coefficient σ11

the shock to the marginal utility of the second characteristic ν2n, does not affect the deviation from the
mean for the first characteristics, i.e., the marginal (dis)utility of price
put another way, the unobserved heterogeneity has been modeled such that if the price and speed of a
computer are the only two characteristics in consideration, and a given person gets a positive shock to the
marginal utility of speed (they get more utility from the speed of computer relative to another person), it
does not imply that they also get a higher (dis)utility from the price of the computer due to the higher utility
from speed
the (dis)utility from price is equal to α plus a person specific deviation only for price σ11ν1n
similarly, variances of αn and βn depend on the variances of the shocks of these characteristics (e.g.
Var[αn] = σ2

11Var[ν1n]) but not on the covariance of the shocks, even if Cov[ν1n, ν2n] 6= 0, since
σ12 = σ21 = 0
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Next, consider the covariance between αn and βn

Covariance between the two random variables is defined as
Cov(αn,βn) = E [{αn − E(αn)}{βn − E(βn)}] hence

Cov(αn,βn) = E(αnβn)− αβ
= σ11σ21Var(ν1n) + σ12σ22Var(ν2n)

+ σ11σ22Cov(ν1n, ν2n) + σ12σ21Cov(ν1n, ν2n)

= σ11σ22Cov(ν1n, ν2n).

(108)

the first line is due to the definition of a covariance and the observation that E[αn] = α and E[βn] = β
the second line follows from substituting values of αn and βn from equation (107), taking the expectations,
setting E[νn] = 0 and simplifying
the last line is if we set σ12 = σ21 = 0 and shows that even after setting the off-diagonals in Σ equal to
zero, the covariance between the marginal utilities is not necessarily zero – unless we now further assume
that the mean zero error terms νn are not correlated across the characteristics

154 / 215



RANDOM COEFFICIENTS LOGIT
DISTRIBUTIONS OF νn AND PARAMETERS θ2

Common to assume that νn are drawn from multivariate standard normal or log-normal,
i.e., covariances between the error terms are zero as well

In the special case where the terms of Π are also zero – as in the foregoing discussion – this implies that
covariance between marginal utilities will also be zero

However, if the terms of Π are not all zero, they will still invoke correlations between the
marginal utilities of different characteristics

as equation (97), reproduced below for this special case of two characteristics and five demographics shows

αn = α +π11d1n + π12d2n + . . .+ π15d5n

+σ11ν1n + σ12ν2n

βn = β +π21d1n + π22d2n + . . .+ π25d5n

+σ21ν1n + σ22ν2n

(97)

in this case, the covariance between αn and βn will be invoked via the π terms and the covariances
between the demographic variables, even if we set σ12 = σ21 = 0 and choose the distribution of νn to be
multivariate standard normal

Thus as mentioned earlier, if we use demographic data and don’t set the Π to zero (at
least not all terms) then setting the off diagonals of Σ to zero and drawing νn from
multivariate standard normal is not so restrictive
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The essential idea of estimation remains the same as that of a two-step estimation outlined
in the section on logits

Briefly,

estimate mean utility δjt and then use it in the second step to estimate the moment
functions and find parameters that minimize the value
this requires first estimating model predicted market shares via (103), equating them
to observed market shares, and then inverting the relation and using a contraction
mapping to compute δjt

We consider each of these along the way and following Nevo (2001), combine everything
in a 5-step algorithm
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(-1) For each market t, draw Ns random values for (νn,dn) from the distributions Fν(ν) and
Fd(d)

– the distribution Fd(d) can be estimated using census data
– for Fν(ν) we can use zero mean multivariate normal with a pre-specified covariance

matrix

(0) Select arbitrary initial values of δjt and θ2 = {Π,Σ} and for θ1

– for θ1 =
[
α β′

]′ use initial values from simple logit estimation

(1) Use random draws and the initial parameter values to estimate the model predicted market
shares s̃jt of each product in each market

– use (105) to compute these shares
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(2) Obtain δ̂jt

(A) Keep θ2 = {Π,Σ} fixed and change values of δjt until predicted shares s̃jt in step
above, equal the observed shares – this is the inversion step where we want to find
δt such that sjt = s̃jt(δ1t, . . . , δJt,θ2) in each market

(B) This can be done using the contraction mapping δh+1
t = δht + [ln(st)− ln(s̃t)]

(C) Note carefully that mean utility is a function of observed market shares and
parameters θ2 thus, δjt = δjt(st,θ2)
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(3) Define error term as ξjt = δ̂jt(st,θ2) + αpjt − xjtβ and calculate the value of the
moment condition, i.e., the GMM objective function

(A) As before, subsume pjt within xjt as just another column of xjt and redefine
xjt =

[
−pjt xjt

]
; similarly, redefine matrix X to be inclusive of the price vector

so that X =
[
−p X

]
(B) Thus ξjt(θ1,θ2) = δ̂jt(st,θ2)− xjtθ1.

In matrix notation ξ = δ̂(s,θ2)−Xθ1
(C) Then the objective function to be minimized is(

ξ(θ1,θ2)′Z
)
Φ
(
Z′ξ(θ1,θ2)

)
,

where Φ is the GMM weighting matrix
(D) Initially set the weighting matrix as Φ = (Z′Z)−1
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(4) Search for better values of θ1 =
[
α β′

]′ and θ2 = {Π,Σ} and the GMM weighting
matrix Φ that minimize the objective function as follows:

(A) Note that while ξ(θ1,θ2) is a function of both sets of parameters θ1 and θ2, it
actually partitions into two components: ξjt(θ1,θ2) = δ̂jt(st,θ2)− xjtθ1
– this is important because we can help the search algorithm by solving for θ1,
conditional on θ2 analytically – how? in the GMM objective function given above
[(ξ′Z)Φ(Z′ξ)], set ξ = δ̂(θ2)−Xθ1
– now consider the first-order condition with respect to θ1 and solve for θ1. See
equations 5.31 and 5.32 for FOC and its solution for the GMM estimator
– this implies that if we have some fixed values of θ2, then θ1 can be solved for
analytically as θ1 = (X′ZΦZ′X)−1X′ZΦZ′δ̂(θ2)

(B) Thus, first solve (search) for θ1 as θ̂1 = (X′ZΦZ′X)−1X′ZΦZ′δ̂(θ2)
(C) Use new θ1 =

[
α β′

]′ to re-compute error term ξ (see 3b above)
(D) Next, update the weighting matrix Φ as Φ = (Z′ξξ′Z)−1

(E) Take the new value of Φ and update the GMM objective function, (ξ′Z)Φ(Z′ξ)
(F) Finally, update θ2 = {Π,Σ} – do a non-linear search over {Π,Σ} to minimize the

objective function
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(5) Return to step (1) above with all new shiny parameter values (keep the original draws)
and iterate
– Note that you can skip the updating of the weighting matrix Φ in step 4e from now on
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Brand Dummies

In the section on logits, we discussed adding in the brand dummies to the vector xjt
and recovering the β coefficients for the brand characteristics
The same can be done here as well but will need to have two separate versions of
data matrix X (call them X1 and X2)
Observe that X (defined to be inclusive of the price vector) enters the utility
function twice:

in the linear part of the estimation as mean utility δ(X;θ1) = Xθ1 + ξ – this is from
δjt = δ(xjt, pjt, ξjt;θ1) = α(−pjt) + xjtβ + ξjt
and in the non-linear part of the estimation as an individual deviation from the mean
utility µn(X;θ2,dn,νn) = X(Πdn + Σνn) – this follows from
µnjt = (−pjt,xjt)(Πdn + Σνn) – and allows for random coefficients on product
characteristics
In practice we may not want to allow random coefficients on all characteristics, in which
case the data matrix X appearing in µn can be a subset of the one appearing the linear
part δ

Thus, we can write the two components as
δ(X1;θ1) = X1θ1 + ξ and,
µn(X2;θ2,dn,νn) = X2(Πdn + Σνn)
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Brand Dummies

Thus, we can write the two components as
δ(X1;θ1) = X1θ1 + ξ and,
µn(X2;θ2,dn,νn) = X2(Πdn + Σνn)
X1 includes all variables that are common to all individuals (price, promotional
activities, and brand characteristics or brand dummies instead of brand
characteristics)
X2 contains variables that can have random coefficients (price and product
characteristics but not brand dummies)
Note that if we use X1 and X2, then the estimator θ̂1 in step 4a/4b above will be
θ̂1 = (X′1ZΦZ′X1)−1X′1ZΦZ′δ̂(θ2)
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Additional Instruments

The instruments matrix Z consists of all exogenous variables
If the brand characteristics (excluding price) are exogenous, then the brand
characteristics plus the instrument(s) for the price variable consist of the matrix Z,
or alternatively, if we use brand dummies, then the brand dummies and the price
instrument(s) form the matrix Z
However, note that if we have only one additional instrument for price, it will not be
enough for the identification of the model parameters

The brand characteristics (or brand dummies) plus the one additional instrument for
price will give exactly as many moment conditions as the number of components of the
parameter vector θ1
These would be enough in the linear logit case
However, in the random coefficients case, we have to estimate additional k×D+ k× k
parameters of θ2 = {Π,Σ}
This is not possible unless we have an additional k ×D + k × k moment conditions
In practice, researchers often set some of the terms of the Π matrix to zero and also set
the parameter matrix Σ to be diagonal (see earlier discussions)
This reduces the need for additional moment conditions from kD+ k2 to g+ k where g
is the number of non-zero terms in Π
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Additional Instruments

These may be relatively easier to overcome (these instruments should also not be
nearly collinear else will give rise to redundant moment conditions)
If one is using BLP-style instruments for price (and product characteristics are
exogenous) then recall that, in general, one gets more than one instrument for price
by using sums of the values of characteristics of other products offered by a firm, and
the sums of the values of the same characteristics of products offered by other firms
Alternatively, if using Hausman-style instruments, the price of the product from
more than one market needs to be used (for instance, Nevo (2001) uses data from 20
quarters and multiple cities and constructs 20 additional instruments from other
cities matching one from each quarter)
An additional set of instruments could be the average value (average over n
individuals) of the product characteristics interacted with the person-specific
demographics to account for the parameters in the Π matrix and similarly the
average value of the person specific shocks ν interacted with product characteristics
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PRODUCT SPACE APPROACH
SEPARABILITY AND AGGREGATION

Separability

The main method we will look at in the products space approach is one which solves
the dimensionality problem by dividing the products into small sub-groups and then
allow some relatively flexible substitution patterns between the products within a
group
Useful if we could break down the overall consumer decision problem into separate
parts, some of which could be estimated separately
This is the issue of separability
What assumptions do we need on an individual consumer’s utility function to treat
and analyze demand for some products separately from the demand for other
products?
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SEPARABILITY AND AGGREGATION

Aggregation

A related problem is that of aggregation, which considers the relationship between
individual consumers’ behavior and aggregate consumer behavior (which is the sum
of individual behavior over all individuals)
When working with aggregate data, one can ask whether there are assumptions on
preferences such that aggregate demand is generated by a “representative consumer”
with “rationalizable” preferences
There is no reason why aggregate data, or any data that is an average over many
people should conform to a theory of consumer behavior that focuses on individual
people or households

170 / 215



GORMAN FORM & AGGREGATION
HOMOTHECITY

Preferences (�)are homothetic if tq1 � tq2 ⇔ q1 � q2 for any t > 0

the consumer is indifferent between bundles tq1 and tq2 whenever they are
indifferent between bundles q1 and q2

there is only one indifference curve and any indifference curve is a radial blowup of
another and all indifference sets are related by proportional expansion along rays
marginal rates of substitution are unaffected by equal proportional changes in all
quantities, so that income expansion paths are straight lines through the origin
preferences are homothetic if and only if they are of the form

u(q) = F (f(q)) where f(tq) = tf(q), (109)

and F (·) is a monotone increasing function
the utility function must admit a function that is homogenous of degree one (the
f(·)) and since utility functions are only defined up to monotonic transformations,
then we may as well write the utility function to be just u(q) = f(q) where the
latter is, as before, homogeneous of degree one
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Consider the consumer’s expenditure minimization problem
min p · q s.t. u(q) = f(q) = u.

Since the function is homogenous of degree one, doubling q will double the target
utility, but doubling q means doubling the expenditure
This means that if e(p, u) = q∗ · p is the minimum expenditure for target utility u,
then for a target utility of tu, the minimum expenditure is
e(p, tu) = tq∗ · p = te(p, u)
Now if the initial target utility is equal to 1, then by letting t = u, we can write
e(p, u) = ue(p, 1) and hence, for homothetic utility preferences, the expenditure
function is of the form

e(p, u) = ub(p), (110)

where b(p) is some linearly homogenous and concave function of prices

This implies the following forms for indirect utility, Hicksian and Marshallian
demand curves (V (p, y), h(p, u) and q(p, y) respectively)

V (p, y) =
y

b(p)
, hj(p, u) = u

∂b(p)

∂pj
, qj(p, y) = yqj(p),

where y =
∑
j

pjqj is the total expenditure
(111)
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Example: cobb-douglas utility function given by u(q) = qβ11 qβ22 . . . , qβJJ where the
associated demand functions are of the form

qj = y
1

pj

βi∑J
j βj

Implications for demand estimation
demand for each good is proportional to expenditure (income), or alternatively, the
Engel curve for each good is a straight line going through the origin
expenditure elasticity of good j is always one

ηj =
∂lnqj
∂ ln y

= 1 ∀j = 1, . . . , J.

known as the expenditure proportionality, which is equivalent to the requirement
that budget shares (wj =

pjqj
y

) of all commodities are independent of the level of
total expenditure (income) so that a consumer always spends a constant proportion
of their income on a product, even though income may be varying across different
consumers
all expenditure elasticities are equal to one – a result that is contradicted by most
empirical studies
demand for each good is independent of prices of other products implying that
cross-price elasticities are zero
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A less restrictive form is that of quasi-homotheticity
In this formulation, a fixed expenditure element (a(p)) is added to the expenditure
function in equation (110) so that it is now given by

e(p, u) = a(p) + ub(p) (112)

This form is called the Gorman Polar Form
The term a(p) represents the subsistence level of expenditure when u = 0 and b(p) is the
marginal cost of utility

The associated indirect utility and demand functions (per the usual derivations) take the
forms

V (p, y) =
y − a(p)

b(p)
and qj(p, y) = aj(p) +

bj(p)

b(p)

[
y − a(p)

]
where aj(p) =

∂a(p)

∂pj
and bj(p) =

∂b(p)

∂pj

(113)

a(p) is interpreted as the subsistence spending amount and b(p) is a price index that
deflates income/expenditure over and above the subsistence level
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Some authors write it in an alternative form

we can define A(p) = 1
b(p)

and B(p) = −a(p)
b(p)

and define αj(p) = aj(p) + bj(p)B(p) = aj(p)− βj(p)a(p) and
βj(p) = bj(p)A(p) =

bj(p)

b(p)

Then (112) and (113) can be expressed as

e(p, u) = a(p) + ub(p)

V (p, y) = A(p)y +B(p)

qj(p, y) = αj(p) + βj(p)y

where, A(p) =
1

b(p)
B(p) = −a(p)

b(p)

and, αj(p) =
∂a(p)

∂pj
− βj(p)a(p) βj(p) =

1

b(p)

∂b(p)

∂pj

(114)
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The budget share equations in this case are given by a weighted average of two terms

wj =
(a
y

)
(
pjaj
a

) +
(

1− a

y

)
(
pjbj
b

), (115)

Implications

if a = y (subsistence level is equal to the entire income) the budget share of good j
is equal to just pjaj

a
, and if expenditure is much larger than the subsistence level (so

a/y ≈ 0) then the share is given by pjbj
b

In aggregate, the expenditure patterns are a weighted average of value shares
appropriate to very rich and very poor consumers
Engle curves are still linear but they do not go through the origin anymore
although homotheticity implies unitary income elasticities for all commodities,
quasi-homotheticity implies elasticities that only tend to unity as total expenditure
increases
significant generalization/improvement over the previous case, but still restrictive as
it is unlikely to be true for narrowly defined commodities
even for broad commodities such as food, household budget studies tend to give
nonlinear Engel curves (we will get to that further below)
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Example: Stone-Geary utility/linear expenditure system (LES) – u(q) =
∏J
j (qj − αj)βj

or equivalently as u(q) =
∑J
j βj ln(qj − αj) with

∑J
j βj = 1

implied expenditure, indirect utility and demand functions are

e(p, u) =

J∑
i

pjαj + u
J∏
j

p
βj
j , V (p, y) =

y −
∑J
j pjαj∏J

j p
βj
j

,

and qj(p, y) = αj + βj
y −

∑J
j pjαj

pj

expenditure on good j is

pjqj = pjαj + βj(y −
J∑
j

pjαj)

and is called the linear expenditure system (LES) (expenditure is linear in prices
and income) which is easy to estimate, and has been very popular in empirical
studies for this reason
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Example: Stone-Geary utility/linear expenditure system (LES) – u(q) =
∏J
j (qj − αj)βj

or equivalently as u(q) =
∑J
j βj ln(qj − αj) with

∑J
j βj = 1

expenditure on good j is

pjqj = pjαj + βj(y −
J∑
j

pjαj)

and is called the linear expenditure system (LES) (expenditure is linear in prices and
income) which is easy to estimate, and has been very popular in empirical studies for this
reason

characterized by the marginal budget share and subsistence level parameters,
requiring estimation of 2J parameters
compare that to the more general case of estimating J2 + J parameters (own and
cross-price elasticities and income/expenditure elasticities), or, if adding up,
homogeneity, and symmetry restrictions are imposed, there are (2J − 1)(J/2 + 1)
parameters to be estimated
nonetheless, if concavity of the expenditure function is allowed, then by
construction, all cross-price elasticities are positive and hence the system cannot be
used if some of the products are complements
also there is an approximate proportionality between own-price and expenditure
elasticities
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EXACT AGGREGATION

Aggregate demand data raises the problem as to whether the aggregate demand function is
consistent with consumer theory

Certain conditions are necessary under which we can treat the aggregate demand
estimations as resulting from the behavior of a single utility maximizing consumer (exact
aggregation)

As you can guess by now, they have to do with quasi-homotheticity and Gorman Polar
Form
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Suppose there areN consumers (or households) that face the same prices but differ only in the incomes or
expenditures on different products so that the demand for good j for the nth individual is of form

qjn = gjn(p, yn). (116)

Then the average demand q̄j – aggregated by adding up quantities over all individuals and dividing byN – is given
by some function fj as

q̄j = fj(p, y1, y2, . . . yN ) =
1

N

N∑
n

gjn(p, yn) (117)

exact aggregation is possible if we can write (117) in the form

q̄j = gj(p, ȳ) where ȳ =
1

N

N∑
n

yn (118)

An implication is that the general function in (116) must be linear in yn, that is, for some function αjn and βj of
p alone, be of form

qjn(p, yn) = αjn(p) + βj(p)yn (119)

Thus, if the aggregate (average) demand is a function of prices and average income, as in (118), then the underlying
individual demand must be of the form given by (119)

But this is the same demand function from quasi-homothetic preferences as in (114) with a subscript n for the nth

consumer, and αj and y both vary over consumers, but importantly, βj does not vary over consumers (i.e,
person-specific α(p) but identical β(p))
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Conversely, if the nth consumer has quasi-homothetic preferences with demand given by
(119), then the average demand – aggregated via adding up quantities over all individuals
and dividing by N – is

q̄j =
1

N

N∑
n

qjn(p, yn)

= αj(p) + βj(p)ȳ, where

αj(p) =
1

N

N∑
n

αjn(p), and ȳ =
1

N

N∑
n

yn.

(120)

Thus, for exact linear aggregation, underlying individual demand must be from
quasi-homothetic preferences and if the consumer has a demand corresponding to
quasi-homothetic preferences, then aggregate demand must be of a similar form

(119) is necessary and sufficient for (118)

Note that the forms above are arising only due to aggregation requirements, and have
nothing to do with requiring aggregate utility maximization
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Suppose now that individuals maximize utility and the individuals demand function is of
form (119)

Gorman showed that the quasi-homothetic demand of the form above is generated by a
consumer with the expenditure function given by

en(p, un) = an(p) + unb(p), (121)

i.e., expenditure is of (Gorman) polar form with subscript n in the equation (114)

Deaton and Muellbaur show that it is a ‘if and only if’ condition

Similarly, the average of the expenditure functions in (121) is

ē(p, un) = ā(p) + ub(p), (122)

and corresponds to the expenditure function for the average demand function in (120)

If individuals maximize utility, and preferences are such that they satisfy the exact
aggregation condition, then the average demand function will be consistent with utility
maximization

Moral of the story ... if we want exact aggregation and want to think of the aggregate
demand as arising from a utility maximization of a aggregate consumer, then we have to
work with quasi-homothetic utility functions
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NONLINEAR AGGREGATION

Aggregation given earlier leads to the linear Engel curves.
Muellbauer (1975,1976) introduced exact nonlinear aggregation by starting with
budget shares rather than with quantities, so that aggregation is over the budget
shares of different consumers
For n consumers, the average budget share of good j is given by

w̄j =
pj
∑
n qjn(p, yn)∑

n yn
=
∑
n

( yn∑
n yn

)
wjn. (123)

defined as a weighted average of individual shares wjn with weights given by the
share of each individual in total expenditure on good j.
Turns out that such a representative consumer (and the assumed cost function)
exists only if the preferences are such that the expenditure function of each
individual has the form (called Generalized Gorman Polar Form)

en(p, un) = θn(un, a(p), b(p)) + φn(p) (126)

where a(p), b(p) and φ(p) are homogenous of degree 1 in prices, θn( ) is
homogenous in a(p) and b(p) and,

∑
n φn(p) = 0
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Deaton and Muellbauer consider a special case, in which the representative consumer’s
expenditure level (income) y0 is assumed to depend on the distribution of individual
expenditures (incomes), y1, . . . , yn but not on prices, which leads to particularly useful
class of demand equations

For a representative consumer the expenditure function takes the form

e(p, u0) = [a(p)α(1− u0) + b(p)αu0]1/α (132)

and the corresponding budget share equations are said to have the price independent
generalized linear form (PIGL).

As α→ 0, the representative expenditure function becomes

ln(e(p, u0)) = (1− u0) ln(a(p)) + u0 ln(b(p)) (133)

These give the nonlinear Engel curves as

wj =

{
γj + ηj(y/k)−α PIGL
γ∗j + η∗j ln(y/k) PIGLOG

(134)

where γ’s and η’s are functions of prices only, k varies over individuals (or households)
and can be used to capture demographic effects

184 / 215



GORMAN FORM & AGGREGATION
ALMOST IDEAL DEMAND SYSTEM

PIGL/PIGLOG family generates exact nonlinear aggregation over individuals or households with nonlinear Engel
curves

Merits of representation of market demand as if they were the outcome of decisions by a rational representative
consumer has made for extensive application of this class of models

A specific application comes from a second-order Taylor series expansion of equation (133) so that the first and
second derivatives of the expenditure function with respect to prices and utility can be set equal to those of any
arbitrary expenditure function at any point (a flexible functional form)

Deaton and Muellbauer suggest functional forms for a(p) and b(p) in (133) which result in a flexible system they
call the ‘almost ideal demand system’, where

ln a(p) = α0 +
∑
j

αj ln pj +
1

2

∑
j

∑
k

γ
∗
jk ln pj ln pk

ln b(p) = ln a(p) + β0

∏
j

p
βj
j

(135)

AIDS expenditure function is given by

ln e(p, u) = α0 +
∑
j

αj ln pj +
1

2

∑
j

∑
k

γ
∗
jk ln pj ln pk + uβ0

∏
j

p
βj
j (136)

The expenditure function will be linearly homogenous in p as long as∑
j αj = 1,

∑
j γ
∗
kj =

∑
k γ
∗
kj =

∑
j βj = 0
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AIDS demand functions in budget share form are

wj = αj +
∑
k

γjk ln pk + βj ln(y/P )

where P is a price index defined by

lnP = α0 +
∑
k

αk ln pk +
1

2

∑
i

∑
k

γki ln pk ln pi

(27)

where γjk = 1
2
(γ∗jk + γ∗kj)

The restrictions on the parameter of the cost function impose restriction on the parameters
of the AIDS demand system (27) given by

J∑
j=1

αj = 1
J∑
j=1

γjk = 0
J∑
j=1

βj = 0

∑
k

γjk = 0 γjk = γkj

(137)

Provided the restrictions above hold (or are imposed), (27) represents a system of demand
functions which add up to total expenditure (

∑
wj = 1), are homogeneous of degree

zero in prices and total expenditure taken together, and satisfy Slutsky symmetry and give
nonlinear Engle curves.
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SEPARABILITY & MS BUDGETING
RELATED BUT DISTINCT

Related but distinct

Separability refers to the case when a consumer’s preferences for products of one group
are independent of product-specific consumption of products from other groups

Multi-stage budgeting (MS budgeting) refers to when a consumer (or household) can
allocate their total expenditure on different goods in sequential stages, represented as a
utility tree, where in the first stage, the total current expenditure is allocated to broad
groups of products (food, housing, entertainment) followed by the allocation of
expenditures within each broad group (e.g., meats, vegetables, etc. within the food group)
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SEPARABILITY & MS BUDGETING
SEPARABILITY

Separability Preferences for products of one group are independent of product-specific
consumption of products from other groups

Thus,
u(q1, . . . , qj) = f [v1(q(1)), . . . , vk(q(k)), . . . vK(q(K))], (138)

where (q1, . . . , qj) = (q(1),q(2), . . . ,q(k)) i.e., the set {q(j)} is a partition of
(q1, . . . , qj) and there are K < J partitions and f(·) is an increasing function of
sub-utility functions v1, . . . , vk defined over the partitions

The groups could be broad categories such as food, shelter, etc. or within a class of
related products, it could be subgroups such as the type of food (meat, vegetables, etc.)

This does not remove the dimensionality problem but does lessen it. For example, for a
linear demand system, the total number of parameters reduces from J2 + J (additional J
parameters are for income) to J2/K +K2 number of parameters (for J = 20 products
and K = 10 subgroups, we go from a total of 420 parameters to 140 parameters)
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SEPARABILITY & MS BUDGETING
SEPARABILITY

The implied subgroup demand functions – conditional demand functions – for all products j in groupG are of the
form

qj = g(yg,pg), (139)

where yg =
∑
i∈G piqi is the total expenditure on products in group G and pg is the vector of prices of these

products

Note that they do not include the prices of products not in Group G

Let sij = ∂qhi /∂pj be the terms of the Slutsky matrix (i.e., partials of the Hicksian demand function with respect
to prices), then for any two product i ∈ G and j ∈ H whereH 6= G,

sij = µGH
∂qi

∂y

∂qj

∂y
= λGH

∂qi

∂yg

∂qj

∂yh

where λGH = µGH
∂yg

∂y

∂yh

∂y

(140)

µGH summarizes the interrelation between groups

λGH is the compensated derivative of expenditure on groupG with respect to a proportional change in all prices in

groupH (i.e., λGH =
∑
j∈H pj

∂yg
∂pj

∣∣∣
u=const

)

If there areK total groups, then we can write aK ×K matrix from the λ′s that is interpretable as the Slutsky
substitution matrix of the group aggregates

Weak separability results in a two-tier structure of substitution matrices: there areK completely general intragroup
Slutsky matrices with no restrictions on substitutions within each group, but between groups substitution is limited
by (140)
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SEPARABILITY & MS BUDGETING
WEAK VS STRONG SEPARABILITY

When the marginal rate of substitution between any two goods belonging to the same
group is independent of the consumption of goods within the other groups, it is consider
as weak separability of preferences

If the marginal rate of substitution between any two goods belonging to two different
groups is independent of the consumption of any good in any third group, this separability
is called strong separability or block additivity.||

Strong form is when

u(q1, . . . , qj) = f [v1(q(1)) + . . .+ vk(q(k)) + . . .+ vK(q(K))], (141)

and f ′(·) > 0. In turn, the equivalent form of (140) is given by

sij = µ
∂qi
∂x

∂qj
∂x

(142)

where note that µ is independent of groups to which i and j belong

||Note that some authors refer to this form as just ‘additive’ separability (without the use of the word
block), but technically that is the case when there is only one good in each group.
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SEPARABILITY & MS BUDGETING
MULTI-STAGE BUDGETING

Multi-stage Budgeting: Consumers can allocate total expenditures in stages, starting
with the top-level group and then to any subgroups or sub-subgroups within them

At each stage, information appropriate for that stage only is required, i.e., the allocation
decision is a function of only that group’s total expenditure and price indexes for the
subgroups and not of prices or price indexes of products in the other groups

If the first stage consists of broad categories (food, housing, entertainment) then the consumer decides how
much of the budget to allocate to each of these categories depending on three price indexes and not
individual prices of types of food items etc
Within the food category, the consumer decides how much to spend on different food items (or subgroups)
based on the total amount allocated for food and prices of individual food items (or price indexes if there are
further subgroups with the food group)
Similarly, allocations are done within other groups (housing, entertainment)
The process repeats at a third level if there are subgroups (for instance, within the foods group, there may be
subgroups of meat, vegetables, etc., and then within any of these subgroups, there are individual items)

Thus the consumer can allocate the expenditures to the subgroups in sequential stages

However, all these sequential allocations must equal those that would occur if the
consumer’s utility maximization problem was done in one complete information step
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SEPARABILITY & MS BUDGETING
MULTI-STAGE BUDGETING

Because expenditure allocation to any good within a group can be written as a function
only of the total group expenditure and the prices of goods within that group, the demand
for any good belonging to the group must also be expressed as a function only of total
expenditures on the group and the prices of goods within the group

Thus

u(q1, . . . , qm, qv, qd, . . . , qj) = f [v1(q(1)), . . . , vF (qm, qv, qd), . . . , vK(q(K))] (143)

implies
qj = g(yF , pm, pv, pd) j ∈ {m, v, d} (144)

where yF is the total expenditure on the food items

In fact, the converse is also true: the existence of subgroup demand functions implies
weak separability
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SEPARABILITY & MS BUDGETING
LINKS

Weak separability and multi-stage budgeting are closely related concepts but are not the
same nor does one imply the other

Weak separability is necessary and sufficient for the last stage of multi-stage budgeting

While weak separability is necessary and sufficient for the last stage of multi-stage
budgeting, and one can proceed with group-specific demand functions at the bottom level
(as above)

Allocation of total budget to different groups at higher stages requires further restrictions
on preferences, or on stronger notions of separability and on composite commodity
theorem

To be able to do upper-level allocation, there must be an aggregate quantity and price
index for each group which can be calculated without knowing the choices within the
group

A useful set of requirements is that (1) the overall utility is separably additive in the
sub-utilities, and that (2) the indirect utility functions for each group are of the
generalized Gorman polar form
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MERGER SIMULATION
LINEAR DEMAND EXAMPLE

Appendix – Merger Simulation

(1) How to back out marginal costs
(2) Compute new prices under a merger
(3) Allow cost efficiency for merging firms
(4) Example with Linear demand
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HORIZONTAL MERGERS
MERGER SIMULATION - DEMAND MODELS

Commonly used demand systems

Linear/Log-linear
Almost Ideal Demand System (AIDS)
Logit/Nested Logit
Random Coefficients Logit

Pros and cons – models differ in flexibility for own- and cross-price elasticities,
requirements on data, and difficulty of estimation

Linear and AIDS – flexible and can give negative cross-elasticities (complements),
but difficult to estimate if too many products (the ‘dimensionality curse’)
Logit – easy to estimate, suffers from the ‘independence of irrelevant alternatives’
(IIA) problem, and if shares are small, own elasticity is proportional to price
Random coefficients and its variants difficult to estimate under strict time restrictions

Endogeneity – models must account for simultaneity of price and quantity
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MERGER SIMULATION
MODELS OF COMPETITION

Models of Competition

What are the strategic variables?

Prices, quantities, quality, advertising

How do firms set their values?

Cooperatively or non-cooperatively
Simultaneously or sequentially

What is the equilibrium concept?

Typically Nash equilibrium

We will focus on differentiated products Bertrand competition where

Firms move simultaneously to set prices
Outcome is via Bertrand-Nash equilibrium
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MERGER SIMULATION
OBTAINING COSTS

Costs can be obtained from independent sources (e.g. firms accounts, industry reports)

Can also be backed out from demand model when combined with a model of competition
such as Bertrand-Nash equilibrium

Intuition from a monopolist’s problem ...

max
p

pq(p)− TC(q(p))

where FOC’s give

p∗ − c(q(p∗))
p∗

= − 1

η(p∗)

The equation can be rewritten as price is equal to marginal cost plus a markup

p = c+
1

(∂q(p)/∂p)
q(p)
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MERGER SIMULATION
SUPPLY SIDE – MULTIPRODUCT/OLIGOPOLY

Let there be J differentiated products and F firms and where the f -th firm produces a
subset Ff of the J products

Let the demand for the j-th product be given by

qj = qj(p)

where p is a vector of all related prices (could be any of the demand functions we
discussed earlier)

The the f -th firm maximizes its joint profit over products that it produces

Πf =
∑
k∈Ff

(pk − ck)qk(p)

where ck is the marginal cost of the k-th product, typically assumed constant over the
relevant range, and the sum is over all the products owned by firm f
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MERGER SIMULATION
SUPPLY SIDE EQUATIONS

For firm f , the first order conditions for profit maximization (Nash-Bertand competition)
are

qj(p) +
∑
k∈Ff

(pk − ck)
∂qk(p)

∂pj
= 0 for all j ∈ Ff

Let Θ be a 1/0 joint “ownership” so that terms θjk (row j column k) equal 1 if products j
and k belong to the same firm and 0 otherwise (and 1 on the leading diagonal)

Then we can re-write the FOC equations above for each firm f as

qj(p) +
J∑
k=1

θjk(pk − ck)
∂qk(p)

∂pj
= 0 for all j ∈ Ff

which will give us a total of J such equations
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MERGER SIMULATION
SUPPLY SIDE EQUATIONS

Example: firm 1 owns products 1,2, firm 2 owns products 3,4 and firms 3 and 4 own
products 5 and 6 respectively

q1 + θ11(p1 − c1)
∂q1
∂p1

+ . . .+ θ61(p6 − c6)
∂q6
∂p1

= 0

q2 + θ12(p1 − c1)
∂q1
∂p2

+ . . .+ θ62(p6 − c6)
∂q6
∂p2

= 0

...

q6 + θ16(p1 − c1)
∂q1
∂p6

+ . . .+ θ66(p6 − c6)
∂q6
∂p6

= 0

where note that only those terms survive where θjk 6= 0

Rewrite in matrix notation as

q−Ω(p− c) = 0 where Ωjk = −θjk
∂qk(p)

∂pj
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MERGER SIMULATION
SUPPLY SIDE EQUATIONS

Equivalently, given a demand system qj = Dj(p), if the matrix of slope coefficients
∂qj(p)

∂pk
(row j column k) is given by B, then

Ω = −Θ ·B′

(note: the symbol · is element by element multiplication and not the usual matrix
multiplication)

The quantity equation above can be rewritten as the price markup equation

p = c + Ω−1q(p)

(compare this to the monopolist’s equation on slide 197 – same/similar)

This price equation, along with a demand system equations qj = Dj(p) jointly
determines equilibrium prices and quantities and are at the heart of merger simulation
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MERGER SIMULATION
SUPPLY SIDE EQUATIONS

Given estimates of demand functions, information about ownership, and
observed prices and quantities, we can back out markups and marginal costs

p = c + Ω−1q(p)

⇒
c = p−Ω−1q(p)

For merger simulations we change the ownership matrix Θ and re-solve for
prices using the equations p = c + Ω−1q(p) and qj = Dj(p)
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MERGER SIMULATION
ALGORITHM

Step 0a: Estimate the demand system qj = Dj(p) and obtain B the matrix of slope
coefficients (or use previous studies); i.e. Bjk =

∂qj(p)

∂pk

Step 0b: Construct Ω0 = −Θ0 ·B′ using pre-merger ownership matrix Θ0

Step 1: Given data on price and quantity back out estimates of marginal cost
ĉ = p0 −Ω−1

0 q0(p0) (unless available from outside)

Step 2: Construct the new ownership matrix Θ1

(optionally, adjust mc of merging parties as necessary)

Step 3: Compute the new equilibrium price p∗1 using the equation p∗1 = ĉ + Ω−1
1 q(p∗1)

If the demand system is linear we get a closed form solution for price and quantity

If not linear, will need to search for new price equilibrium using numerical methods

Given type of demand model, can iteratively search for p∗1 such that
|p(h+1) − p(h)| < ε and where
p(h+1) = ĉ + Ω−1

1 (p(h))q(p(h))
and h is the iteration loop
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MERGER SIMULATION
KEY ISSUES

Data requirements can be high

Sales data including product characteristics, cost data and/or data on inputs that
affect cost (additional supply side estimation)
Expertise in demand estimation

Sensibility and sensitivity checks

Do elasticities, margins, marginal costs seem reasonable? Do they match some
known outside information?
How much do they change with demand specification?
Do the assumptions made for the model make sense?

Proceed with caution

They can provide reasonable predictions but require great care
Predictions are sensitive to modelling assumptions
Perhaps use it as internal screen that complements other qualitative work
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MERGER SIMULATION
LINEAR DEMAND EXAMPLE

Suppose demand functions are linear, and the demand for jth product is given by

qj = aj +
J∑
k=1

bjkpj

and marginal cost for each product is mcj

We can write the demand equation in matrix notation as

q = a + Bp

where for instance vector a and matrix B are given by

a =



a1
...
aj
...
aJ

 B =



b11 . . . b1k . . . b1J
...

...
...

bj1 . . . bjk . . . bjJ
...

...
...

bJ1 . . . bJk . . . bJJ


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MERGER SIMULATION
LINEAR DEMAND EXAMPLE

Suppose there are 6 independent firms and 6 products

Demand functions are linear and previously estimated to be

qj = 10− 2pj + 0.3
5∑
k 6=j

qk

In a typical market, say price and quantity are observed to be 4.8 and 7.6
respectively for all the products
p′ = (4.8, 4.8, 4.8, 4.8, 4.8, 4.8) and q′ = (7.6, 7.6, 7.6, 7.6, 7.6, 7.6)

Using the equations above we can back out the marginal cost and compute markups and
price-cost margins

B′ =


−2 .3 .3 .3 .3 .3
.3 −2 .3 .3 .3 .3
.3 .3 −2 .3 .3 .3
.3 .3 .3 −2 .3 .3
.3 .3 .3 .3 −2 .3
.3 .3 .3 .3 .3 −2

 Θ =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


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MERGER SIMULATION
LINEAR DEMAND EXAMPLE

Let a be column vector of intercept terms (all equal to 10 in this example), so
a′ = (10, 10, 10, 10, 10, 10)

Then from p = c + Ω−1q(p) and Ω = −Θ ·B′, it follows that estimated marginal cost
ĉ can be computed as

c = p − Ω−1 q(p)
c1
c2
c3
c4
c5
c6

 =


4.8
4.8
4.8
4.8
4.8
4.8

−


2 0 0 0 0 0
0 2 0 0 0 0
0 0 2 0 0 0
0 0 0 2 0 0
0 0 0 0 2 0
0 0 0 0 0 2



−1 
7.6
7.6
7.6
7.6
7.6
7.6

 =


1
1
1
1
1
1


Thus we have backed out the marginal costs (all equal to 1 in this example) with price
cost margins being 100(4.8-1)/4.8 = 79.16% for each product
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MERGER SIMULATION
LINEAR DEMAND EXAMPLE

Equipped with marginal costs and demand parameters, we can now simulate new
equilibrium prices and quantities

For the moment, let’s continue with our linear demand system

We start by determining/solving for Nash-equilibrium given the set of J demand
equations q = a + Bp and the set of J price equations p = c + Ω−1q(p) derived from
the first order conditions specific to this linear demand system
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MERGER SIMULATION
LINEAR DEMAND EXAMPLE

The set of 2J equations q = a + Bp and p = c + Ω−1q(p) jointly determine
equilibrium price and quantity vectors in any market

Write the 2 matrix form equations as

q = a + Bp and q = Θ ·B′(p− c)

They can be stacked with the endogenous variables p,q on the LHS as[
(Θ ·B′) I
−B I

] [
p
q

]
=

[
(Θ ·B′) 0

0 I

] [
c
a

]
where I are 0 are J × J identity and zero matrices respectively, and hence[

p
q

]
=

[
(Θ ·B′) I
−B I

]−1 [
(Θ ·B′) 0

0 I

] [
c
a

]
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MERGER SIMULATION
LINEAR DEMAND EXAMPLE

The set of equations [
p
q

]
=

[
(Θ ·B′) I
−B I

]−1 [
(Θ ·B′) 0

0 I

] [
c
a

]
can be easily solved using any matrix based software (Matlab, R, Mathematica, SAS,
STAT, etc. ... and can even be programmed in Excel)

Thus given the demand parameters of a linear demand system, marginal costs and the
ownership matrix, we get a unique Nash equilibrium solution in prices and quantities

Let Θ and B be as specified for the linear demand system for six products owned by
six separate firms, and let c′ = (1, 1, 1, 1, 1, 1)
Then

p∗ =


4.8
4.8
4.8
4.8
4.8
4.8

 q∗ =


7.6
7.6
7.6
7.6
7.6
7.6


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MERGER SIMULATION
LINEAR DEMAND EXAMPLE

Suppose firms 1 and 2 merge, firms 3 and 4 merge and firms 5 and 6 merge – then all we
need to do is change the owenership matrix Θ to reflect the new post merger ownership
and resolve the system of equations using the new ownership matrix

Let the pre merger and post merger ownership matrices be given by Θ0 and Θ1

respectively (i.e., for time 0 and 1)

Θ0 =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 � Θ1 =


1 1 0 0 0 0
1 1 0 0 0 0
0 0 1 1 0 0
0 0 1 1 0 0
0 0 0 0 1 1
0 0 0 0 1 1


Now solve for p and q using Θ1[

p
q

]
=

[
(Θ1 ·B′) I
−B I

]−1 [
(Θ1 ·B′) 0

0 I

] [
c
a

]
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MERGER SIMULATION
LINEAR DEMAND EXAMPLE

Suppose firms 1 and 2 merge, firms 3 and 4 merge and firms 5 and 6 merge

The old and new equilibria are as follows

Pre-merger values Post-merger values
Product p q (p-c)/p π p q (p-c)/p π % ∆p

1 4.8 7.6 79.2% 28.88 5.32 7.34 81.2% 31.70 10.80%
2 4.8 7.6 79.2% 28.88 5.32 7.34 81.2% 31.70 10.80%
3 4.8 7.6 79.2% 28.88 5.32 7.34 81.2% 31.70 10.80%
4 4.8 7.6 79.2% 28.88 5.32 7.34 81.2% 31.70 10.80%
5 4.8 7.6 79.2% 28.88 5.32 7.34 81.2% 31.70 10.80%
6 4.8 7.6 79.2% 28.88 5.32 7.34 81.2% 31.70 10.80%

Overall prices increase by 10.8% for each product and total output falls, which would
reduce consumer surplus

What if there was an efficiency defence – say 25% reduction in costs?
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MERGER SIMULATION
LINEAR DEMAND EXAMPLE

Suppose there is a merger specific efficiency defence – that marginal costs would reduce
by 25% – then in addition to changing the ownership matrix, we can multiply mc by 0.75
and resolve

Let the pre merger and post merger ownership matrices be given by Θ0 and Θ1

respectively (i.e., for time 0 and 1)

Θ0 =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 � Θ1 =


1 1 0 0 0 0
1 1 0 0 0 0
0 0 1 1 0 0
0 0 1 1 0 0
0 0 0 0 1 1
0 0 0 0 1 1


Now solve for p and q using Θ1[

p
q

]
=

[
(Θ1 ·B′) I
−B I

]−1 [
(Θ1 ·B′) 0

0 I

] [
0.75 · c

a

]
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MERGER SIMULATION
LINEAR DEMAND EXAMPLE

Suppose firms 1 and 2 merge, firms 3 and 4 merge and firms 5 and 6 merge and costs
reduce by 25% due to mergers

The the old and new equilibria are as follows

Pre-merger values Post-merger values
Product p q (p-c)/p π p q (p-c)/p π % ∆p

1 4.8 7.6 79.2% 28.88 5.13 7.44 85.4% 32.54 6.77%
2 4.8 7.6 79.2% 28.88 5.13 7.44 85.4% 32.54 6.77%
3 4.8 7.6 79.2% 28.88 5.13 7.44 85.4% 32.54 6.77%
4 4.8 7.6 79.2% 28.88 5.13 7.44 85.4% 32.54 6.77%
5 4.8 7.6 79.2% 28.88 5.13 7.44 85.4% 32.54 6.77%
6 4.8 7.6 79.2% 28.88 5.13 7.44 85.4% 32.54 6.77%

Overall prices still increase by 6.77% and output is reduced so merger does not improve
consumer surplus

Can also compute change in total profits and compare to the change in total CS for
welfare criteria
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MERGER SIMULATION
LINEAR DEMAND EXAMPLE - SUMMARY

Thus, we can modify the ownership matrix and/or the vector of estimated (or known)
marginal costs to simulate unilateral effects

In the previous analysis, the demand curves were linear and hence the solutions, the
Nash-Bertrand equilibrium, was easy to compute no matter how large the system of
equations (dictated by J)

More generally, the most appropriate demand system may not be linear but the overall
process stays the same
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