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Sources

These lecture notes are to be used as a supplement to Appendix A of your textbook (Gujarati 4th.

edition). These notes are based on a number of sources. Primary among these are,

(1) Introduction to Econometrics, Stock and Watson. Addison-Wesley, 2003.

(2) Understandable Statistics (6th Ed.), Brase & Brase. Houghton-Mifflin, 1999.

(3) Mathematical Statistics with Applications (4th Ed.), Mendenhall, Wackerley & Scheaffer.

PWS-KENT, 1990.

(4) Econometric Methods (4th. Ed.), Johnston & Dinardo. McGraw-Hill, 1997.

(5) Econometric Analysis (3rd Ed.), Greene. Prentice Hall, 1997

(6) An Introduction to Classical Econometric Theory, Rudd. Oxford, 2000.

The Stock and Watson book is new. It is an excellent text book that covers all relevant topics that

we will be covering during the semester. If possible, you should get a copy of this book and use it

as a supplement to your own textbook. (Note: You are not required to purchase this book, nor will

I expect you to read it. Getting a copy of the book is only a suggestion.)
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1. Sample Space, Probabilities & Random Variables

Definition 1 (Sample Space). The set of all possible outcomes is called a sample space.

Definition 2 (Event). An event is a subset of the sample space.

Suppose you were to toss two coins. Then the sample space would consist of the set of all possible

outcomes, E1 = HH, E2 = HT, E3= TH, E4 = TT. Of these four possible outcomes, E1,E2, E3,

E4 etc. are events. To each of these events, we can assign a probability.

Probability. The probability of an event is the proportion of the time the event occurs in the long

run. Let A be an event in a sample space. Then P (A), the probability of event A is the proportion

of times the event A will occur in repeated trials of an experiment. P (A) is a real valued function

and has the following properties

• 0 ≤ P (A) ≤ 1 for every A.

• If A, B, C, . . . constitute an exhaustive set of events, then P (A + B + C + . . .) = 1 where

A + B + C means A or B or C.

• If A, B, C, . . . are mutually exclusive events, then

P (A + B + C + . . .) = P (A) + P (B) + P (C) + . . . (1)

Definition 3 (Random Variable). A Random Variable is a real valued function for which the

domain is a sample space.

Simply put, this means that if we have a sample space and we can find a mapping between all the

elements in the sample set and the number line, then the value assigned to any element on the

number line is by definition a random number.

Example 1 (Toss Two Coins). Let Y be the number of heads observed when tossing two coins.

Then the sample space consists of the set E1 = HH, E2 = HT, E3= TH, E4 = TT (See Figure 1).
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Figure 1. Tossing Two Coins
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Now, if we let Y be a real valued function such that

Y (E1) = 2; Y (E2) = 1; Y (E3) = 1; Y (E4) = 0,

then, Y is a random variable. Note again that Y is a number on the number line which takes the

same value as the number of heads observed in the toss of the two coins. If the two coins were fair

and we distinguished between the events E2 (HT) and E3 (TH) then the probabilities of each of

the four events would be 1/4.

Example 2 (Map to Unity). Let S be the set of integers from 1 to 10 inclusive and let f a real

valued function such that Y = f(s) = 100 for all s ∈ S. Then Y is a random variable.

Even a dumb function, like the one in example 2, where all numbers from 1 to 10 are being mapped to

1 is a random variable, even though nothing about it seems random. This is because the probability

of an outcome Y = 100 is 1. In general, you observe the following properties about random variables:

• Every point in the sample space maps to a point on the real number line. Thus, in example

of a toss of two coins above, E1 maps to 2, E2 and E3 map to 1 and E4 maps to zero.

• The converse is not true. For instance, in the example of the sample space for the toss of 2

coins, there is no point in the sample space that maps to the number 3 or 3.5 or 4.

• More than one point in the sample space may map to the same point on the number line. In

the example of the toss of two coins, E2 and E3 and both map to the value 1 on the number

line.

• Again, the converse is not true. A point in the sample space cannot map to more than one

point on the real number line.

There are two types of random variables: discrete and continuous. Loosely speaking, the difference

between a continuous and a discrete random variable is weather the random variable Y can only

take certain values on the number line such as the integers or if the Y can even take fraction values

on the number line.

Discrete random variables. Variables that can only assume a countable number of values (e.g.

positive or negative whole numbers)

• Number of people at the symphony

• Number of children in poverty

• Number of Heads observed in the toss of 2 coins
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Continuous random variables. Variables that can take any numerical value-including fractions

(i.e, when the values that can be assumed by the variable are not countable).

• Time it takes to fly to Chicago

• Weight of a new-born baby

• Amount (in volume) of milk I drink with my chocolate chip cookies before going to bed

2. Probability Distributions

2.1. Cumulative Probability Distribution

The cumulative probability distribution is the probability that the random variable is less than or

equal to a particular value. Thus, for a random variable Y , the cumulative density F ( ) at a specific

value y is F (y) = P (Y ≤ y). The cumulative probability distribution is always between 0 and 1. It

is also known as the cumulative density function (CDF) or just the distribution function.

Definition 4 (Distribution Function). Let Y denote any random variable. The distribution

function of Y , denoted by F (y), is given by F (y) = P (Y ≤ y), −∞ < y < ∞.

Theorem 1 (Properties of a Distribution Function). If F (y) is a distribution function, then

the following are true:

(1) limy→−∞ F (y) = F (−∞) = 0

(2) limy→∞ F (y) = F (∞) = 1

(3) 0 ≤ F (y) ≤ 1

(4) F (yc) ≥ F (ya) if yc > ya

(5) Prob(ya < y ≤ yc) = F (yc)− F (ya)

2.2. Probability Distribution of a Discrete Random Variable

The probability distribution for a random variable Y is a mapping from the possible values of Y

to the probability that Y takes on each of those values. Thus, it is the list of all possible values of

the variable along the probability assigned to each value of the random variable. The sum of the

probabilities is always equal to 1:
∑

P (y) = 1. The probability distribution is also known as the

Probability Density Function (PDF).
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Definition 5 (Discrete Probability Density Function). Let Y be a discrete rv taking distinct

values y1, y2, . . . , yn, . . .. Then the function

f(y) =

P (Y = yi) for i = 1, 2, 3, . . . , n, . . .

0 for y 6= yi

(2)

is called the probability density function (PDF) of Y , where P (Y = yi) means the probability that

the discrete rv Y takes the value of yi.

Note the relationship between PDF and CDF: if f(y) is the PDF of a discrete rv Y , then the CDF

of Y (given by F (y)) is

F (y) =
∑
Y≤y

f(y)

= Prob(Y ≤ y).

(3)

Lets look at some specific (discrete) random variables and their distributions.

General Distribution with known probabilities for every outcome: Suppose that Dr.

Ahmed can perform upto 3 cardiac surgeries in a 24 hr. period (his malpractice insurance company

does not allow him to perform more than 3 a day). Analysis of his historic data suggest that he will

perform between 0 and 3 surgeries with probabilities as given in the table below. The tabulation

of all possible outcomes is the PDF. The table also provides the CDF.

Outcome 0 1 2 3

PDF (P (y)) 0.125 0.375 0.375 0.125

CDF (F (y < Y ) 0.125 0.500 0.875 1.000

0 1 2 3

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.5 1 1.5 2 2.5 3

0.2

0.4

0.6

0.8

Figure 2. PDF and CDF of a Discrete Random Variable
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2.3. Discrete Uniform Random Variable

When a random variable Y can take n discrete values with equal probabilities, we say that Y has

a uniform distribution. In this case the probability of any one out come is just 1/n, i.e., the PDF

of Y given by f(y), is 1/n. Thus, A random variable Y has a discrete uniform distribution if it has

a finite number of possible outcomes with values y1, y2, . . . , yn and

f(y) = P (Y = yi) =
1

n
(4)

As an example, let y be the number of dots showing when you roll a dice once. The probability of

any of the six outcomes (1,2,. . .,6) is 1/6. The probability density function and the CDF are given

in the table below.

y 1 2 3 4 5 6

f(y)(PDF) 1/6 1/6 1/6 1/6 1/6 1/6

F (y)(CDF) 1/6 2/6 3/6 4/6 5/6 6/6

2.4. Bernoulli Random Variable

An important case of the discrete random variable is when it is a binary variable (i.e., takes on only

two values). Without loss of any generality, let these be 0 and 1. For instance, Let Y be the pass

or fail outcome of a driving test where Y = 0 indicates that the person failed and Y = 1 indicates

that the person passed. The outcomes of Y and the probabilities are

Y =

1 with probability p

0 with probability 1− p

where p is the probability of success (i.e., passing the test) and 1 − p is the probability of failure.

The PDF of the Bernoulli random variable is

f(y) = py(1− p)(1−y) (5)

Parameters of a Distribution. It is often easy to summarize the distribution (discrete or

continuous) in terms of a few constants. These constants are known as the parameters of the

distribution. For instance, in the case of the Bernoulli distribution above, the parameter of the

distribution is just the probability of success p.
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2.5. Binomial Random Variable

Imagine a process in which there are two or more consecutive Bernoulli trials, each of which has just

two possible outcomes (success or failure), and the probability of success remains the same from

one trial to the next (the trials are independent). The binomial random variable Y is the number

of successes (y) in n trials. Note the following features of the Binomial Random Variables.

• There are a fixed number of trials, n.

• The n trials are independent and repeated under identical conditions

• Each trial has only two outcomes: success (S) and failure (F ) with probabilities p and

q = 1− p.

• For each individual trial, the probability of success is the same.

• The central problem is to find the probability of y successes out of n trials. Thus, the

random variable of interest Y is the number of successes observed during n trials.

• The parameters of the distribution are n and p and the PDF of a binomial random variable

is given by

P (Y = y) = Cn,yp
yq(n−y) (6)

where P (Y = y) is the probability of y successes in n trials when the probability of a single

success is p and Cn,y is the factorial combination given by

Cn,y =
n!

y!(n− y)!
. (7)

and where the symbol n! stands for factorial 1.

Some examples of binomial random variables are: (1) Number of heads in n tosses of a coin, (2)

Number of odd-numbered faces in n throws of die, (3) Number of intoxicated drivers in a random

stop of 100 cars, (4) Number of bad debts in an audit of 50 credit accounts, and (5) Number of

defective pistons in a quality check of 40 engines.

Example 3. Suppose that we wanted to compute the probability that we will get exactly 2 heads

if we flip a fair coin three times. Then, observing heads (successes) can be modeled as a binomial

random variable where n = 3, p = 0.5, q = 0.5 and y = 2. Then by eqn. 6

P (Y = 2) = C3,2.5
2.5(3−2) = 3× .25× .5 = .375

The PDF and CDFs of a binomial random variable when the parameters are n = 10 and (i)p =

.2,(ii) p = .5. and (iii) p=.8 respectively, are given in Figure 3.

1For instance 10! would be 10× 9 . . .× 2× 1
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Figure 3. Binomial PDFs and CDFs

2.6. Geometric Random Variable

Imagine a process in which there are two or more consecutive trials, each of which has just two

possible outcomes (success or failure), and the probability of success remains the same (say p) from

one trial to the next (the trials are independent). However, the process continues until you see the

first success. Then the sample space for this process consists of the points

E1: S (First success on first trial)

E2: FS (First success on second trial)

E3: FFS (First success on third trial)

E4: FFFS (First success on fourth trial)
...

E5: FFFF . . . FS︸ ︷︷ ︸
k−1

(First success on kth. trial)

Note that the size of the sample space is countably infinite (the process may continue for ever if you

never get any success since the process only stops when you get the first success). Suppose that we

define Y to be a random variable that maps the points E1, E2, . . . , Ek to the real number line such

that

Y (E1) = 1, Y (E2) = 2, Y (E3) = 3, . . . , Y (Ek) = K

i.e., the random variable of interest Y, is the number of trial on which the first success occurs.

Then, Y is said to be a random variable with a geometric probability distribution. In general,

since the experiment will continue until you observe a success, say on the yth trial, the sample space

will consist of only E1, E2, . . . , Ey and the probability of observing success on the yth trial, i.e., the

Department of Economics Florida State University Tallahassee, FL 32306-2180
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PDF of Y is

f(y) = P (Y = y) = P (Ey) = P
(
FFFF . . . FS︸ ︷︷ ︸

y−1

)
= q(y−1)p

where as before q = 1 − p. Note the following features of the geometric random variable (and

compare them to the case of the binomial random variable)

• Sequence of independent bernoulli processes and the number of trials is not fixed.

• Again, the trials must be identical and independent.

• Each trial has only two outcomes: success (S) and failure (F) with probabilities p and

q = 1− p.

• For each individual trial, the probability of success is the same.

• However, the geometric random variable Y is the number of the trail on which the first

success occurs (as opposed to the binomial case where Y is the number of successes observed

in n trials).

• The parameter of the distribution is p and the PDF is as given earlier but reproduced here

for completeness.

f(y) = P (Y = y) = P (Ey) = P
(
FFFF . . . FS︸ ︷︷ ︸

y−1

)
= q(y−1)p

(8)

The PDF and CDF for a random variable Y when p = .2, .5 and .8 respectively is given in Figure 4.
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Figure 4. Geometric PDFs and CDFs
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Example 4. Suppose that we play a game of flipping a coin and the game ends the first time that

we get a head. The the probability probability that the game will end on, say the 12 th. flip can

be computed using the PDF give in equation 8 and noting that p = .5, y = 12. Then,

P (Y = 12) = .512−1 × .5 = .000244

2.7. Negative Binomial Random Variable

Imagine now a process in which again there are two or more consecutive trials, each of which has

just two possible outcomes (success or failure), and the probability of success remains the same (say

p) from one trial to the next (the trials are independent). However, this time the process continues

not until you see the first success but rather the second success (or third, or fourth, or . . . , kth.

success where k = 2, 3, 4, . . .). Then the sample space consists of the set of elements Ey where k− 1

successes occurred on the first y− 1 trials and the kth. success occurred on the yth. trail (Note (1)

that we are not interested in which of the y − 1 trials the k − 1 successes occurred, i.e, we are not

concerned about the order of success or failure in the first y − 1 trials as long as k − 1 successes

did occur and y ≥ k, i.e., the number of trial is greater than or equal to the number of preselected

successes).

Suppose that we define Y to be a random variable that maps the points Ey the real number line

such that Y (Ey) = y where y ≥ k. Then the random variable of interest Y , is the number of the

trial on which the kth. success occurs. The random variable Y has what is called the negative

binomial probability distribution. Note the following about the negative binomial distribution

(and compare it to the features of the binomial and geometric distributions).

• Similar to geometric and binomial (but not the same). The number of trials is not fixed.

• Again, the trials must be identical and independent.

• Each trial has only two outcomes: success (S) and failure (F) with probabilities p and

q = 1− p.

• However, the negative binomial random variable Y is the number of the trail on which the

kth. success occurs (compare to geometric where the random variable Y is the number of

the trial on which the first success occurs)

• The parameter of the distribution is p and k and the PDF of a negative binomial random

variable is given by

f(y) = P (Y = y) = C(y−1),(k−1)p
kq(y−k) where y ≥ k (9)

Department of Economics Florida State University Tallahassee, FL 32306-2180
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Example 5. Suppose that we play a game of flipping a coin and the game ends the third time that

we get a head. Then the probability that the game will end on, say the 12 th. flip can be computed

using the PDF above (eqn. 9) and noting that p = 0.5, q = 0.5 and k = 3 and y = 12. Then,

P (Y = 12) = C(12−1),(3−1) × .53 × .512−3 = .0134

The PDFs and CDFs for a negative binomial random variable Y when k = 3, and p = .2, .5 and .8

and when k = 8, and p = .2, .5 and .8 respectively are given in Figure 5 and Figure 6.
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Figure 5. Negative Binomial PDFs
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Figure 6. Negative Binomial CDFs

2.8. Poisson Probability Distribution

One last discrete distribution that we should review is the poisson distribution, which is also related

to the binomial distribution. Recall that in the binomial case, the random variable Y is the number

of successes/events observed when total trials are n and the probability of success/event on any one

trial is p. Consider a continuous interval or region (day, week, month, year whatever), which can be
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broken up into n subintervals, each of which is so small that at most only one trial can take place

in each of the subintervals (and the probability of a success in a single subinterval is p and that of

failure is 1− p). If we were to add up the total number of subintervals in which a success occurred,

we would just get back the total number of successes in the entire interval/region. Further, if the

successes/events in one interval are independent from another interval, then the total number of

successes will have a binomial distribution. If we let np be constant (say np = λ) and choose smaller

and smaller subintervals such that n increases, (i.e., n →∞) then it can be shown that the limit of

the binomial pdf given in 6 is

f(y) = P (Y = y) =
λy

y!
e−λ.

Thus, the poisson distribution can be defined as the limit of the binomial distribution when n →∞

and np is constant (let the constant number be called λ)2. It describes the behavior of a large

number n of independent experiments of which only a very small fraction pn = λ is expected to

yield successes.

A random variable Y given as above has a poisson distribution and it tells us the probability of

observing Y = y successes in the given period. Note that it is not written as a function of p (an

individual success) but rather of λ which is to be interpreted as the average number of successes in

the period and is the parameter of this distribution. The poisson distribution is often used to model

events such as number of large earth quakes in say a 10 year period, or the number of patents a

company may file for in a year, etc. Note the following about the Poisson distribution.

• We count the number of successes, or occurrences of events, in a specified interval or region

(time, space etc.)

• The number of events occurring in one specific interval are independent of the number of

events in a different interval.

• Each event occurs at a single point on the interval (again, time, space etc.)

• The probability of more than one event at a single point in the interval is zero.

• The Poisson random variable Y is the number of successes/events in the interval/region and

for the parameter λ its PDF is given by

f(y) = P (Y = y) =
λy

y!
e−λ. (10)

Example 6. Suppose that a random system of police patrol is devised so that a patrol officer

may visit a given beat location Y = 0, 1, 2, 3, . . . times per half-hour period and that the system is

arranged so that each location is visited on an average of once per half-hr. Then,

2note: e = 2.718 . . .

Department of Economics Florida State University Tallahassee, FL 32306-2180
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• the probability that a given location will be missed in a half hr. is P (Y = 0) = 10

0!
e−1 =

1/e = .368

• the probability that it will be visited once is P (Y = 1) = 11

1!
e−1 = 1/e = .368

• the probability it will be visited twice is P (Y = 2) = 12

2!
e−1 = 1/2e = .184

• the probability it will be visited at least once is P (Y ≥ 1) = 1−P (Y = 0) = 1− .368 = .632

The PDFs for a poisson random variable Y when λ = 3, 10, 20 and 30 respectively are given in

figure Figure 7.
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Figure 7. Poisson Distributions

2.9. Probability Distribution of a Continuous Random Variable

Since a continuous random variable takes on a continuum of possible values, we define the probability

of an outcome y in a small interval around it. Specifically, we talk about the probability P (a ≤ y ≤

c) and summarize the probability of an outcome y (again between small intervals around it) using

the probability density function, also known as the PDF.

Department of Economics Florida State University Tallahassee, FL 32306-2180



14 Farasat Bokhari (Econometrics (EC04421))

Definition 6 (Continuous Probability Density Function). Let Y be a continuous random

variable. Then f(y) is said to be the PDF of Y if the following conditions are satisfied:

f(y) ≥ 0 (11a)∫ +∞

−∞
f(y)dy = 1 (11b)∫ c

a

f(y)dy = P (a ≤ y ≤ c) (11c)

where f(y) is known as the probability element (the probability associated with a small interval of

a continuous variable) and where P (a ≤ y ≤ c) means the probability that Y lies in the interval a

to c.

Graphically, the area under the PDF between any two points (say a and c) is the probability that

the continuous random variable is between these two values. Note that for a continuous rv, the

probability that it takes on a specific value is zero. Finally, note the relationship between PDF and

f Hy L

µ a c

F Hy L

a c

F Ha L
F Hc L

Figure 8. PDF and CDF of a Continuous Random Variable

CDF of a continuous random variable (infact,some authors often define PDF via this relationship):

For a continuous random variable Y

F (y) =

∫ y

−∞
f(t)dt and f(y) =

dF (y)

dy
(12)

The CDF of the continuous rv Y is given as shown in the right hand side panel in figure 8, and

where as in the PDF curve the probability P (a ≤ y ≤ c) is given by the area under the curve

between a and c, in the CDF curve (see Item 5 of Theorem 1 again) it is given by

P (a ≤ y ≤ c) = F (c)− F (a)

i.e., by the difference in the value of the function as on shown on the vertical axis.
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There are a number of important continuous distributions (uniform, normal, beta, etc.). I will delay

the discussion on these for the moment and will later return to four continuous distributions: (1)

Normal distribution, (2) Students t2 distribution, (3) F-distribution and (4) Chi Sq (χ2) distribution.

3. Moments of a Distribution

3.1. Mean and Variance of a Random Variable

The expected value of a random variable Y, denoted E(Y ), is the long-run average, or mean value

of the outcome repeated over many trials. It is a measure of the central tendency of the probability

distribution of the random variable. For a discrete rv, it is equal the the weighted average of all

the possible outcomes, where the weights are the probabilities of each of the outcomes. Thus, to

compute the expected value of a random variable Y with k possible outcomes, we multiple the

value of each outcome with the probability of the outcome and then sum over all the possible

outcomes. For continuous random variable, the expected values is essentially the same thing except

that instead of using a specific outcome, we consider the value of the random variable within a

small interval and then weight it by the probability element of that interval before “summing” over

all the possible outcomes.

Definition 7 (Expectation). Let Y be a random variable with probability distribution f(y).

Then, the expected value of Y , denoted E(Y ) is

E(Y ) =


∑

y yf(y) if Y is a discrete random variable∫ +∞
−∞ yf(y)dy if Y is a continuous random variable

(13)

In the definition above, (i) for the discrete case the random variable Y can take k discrete values,∑
y means the sum over all the k discrete values and f(y) is the discrete PDF of Y and (ii) for the

continuous case, where say Y can take any value between −∞ and +∞, then
∫ +∞
−∞ means the ’sum’

(i.e. integral) over the values of Y and f(y) is the continuous PDF of Y . Note that the expected

value of a constant is the same constant. Draw the number Y = 4, say 1000 times. The average or

the expected value will also be 4. Also, the expected value of a constant multiplied by a random

variable is equal to the constant multiplied by the expected value of the random variable. Thus, we

have the following theorem.
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Theorem 2 (Expectation of a constant and a RV). Let Y be a random variable and c be a

constant. Then,

(1) E(c) = c

(2) E(c + Y ) = c + E(Y )

(3) E(cY ) = cE(Y ).

Proof.

For (1), let X be a random variable such that P(X = c) = 1. Thus, X = c then by definition 7,

E(c) = E(X) =
∑

x

xf(x) =
∑

x

cf(x) = c
∑

x

f(x) = c.1 = c.

For (2), observe that

E(c + Y ) =
∑

y

(c + y)f(y) =
∑

y

cf(y) +
∑

y

yf(y) = c + E(Y ).

For (3), observe that

E(cY ) =
∑

y

cyf(y) = c
∑

y

yf(y) = cE(Y )

�

The variance of a random variable Y , denoted var(Y ) is a measure of the spread of the probability

distribution and is the expected value of the square of the deviation of Y from its mean.

Definition 8 (Variance). Let Y be a random variable with the expected value equal to µY , i.e.,

E(Y ) = µY . Then the variance of Y , denoted var(Y ) is defined as the expectation of (Y − µY )2.

Thus

var(Y ) = E[(Y − µY )2]. (14)

Note that, denoting var(Y ) by σ2
Y , E(Y ) by µY , and the PDF by f(y), then definitions 7 and 8

imply that variance of Y is

var(Y ) = σ2 =


∑

y(Y − µY )2f(y) if Y is a discrete random variable∫ +∞
−∞ (Y − µY )2f(y)dy if Y is a continuous random variable

(15)

Often, a useful way of computing the variance of a random variable is to compute the difference

between expectation of the square of the variable and the square of the expectation.
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Theorem 3 (Variance as expectation of square minus square of expectation).

var(Y ) = E[Y 2]− (E[Y ])2 (16)

Proof. Left as exercise �

Since the units of the variance are the units of square of the variable Y , we often measure the spread

by the standard deviation, which is the square root of the variance (denoted std(Y )).

Example 7 (General Discrete Distribution). Let Y be the number of surgeries performed by Dr.

Ahmed in a day (see table on p. 5), then

E(Y ) = 0× .125 + 1× .375 + 2× .375 + 3× .125

= 1.5

var(Y ) = (0− 1.5)2 × .125 + (1− 1.5)2 × .375 + (2− 1.5)2 × .375 + (3− 1.5)2 × .125

= .75

std(Y ) =
√

.75 = .866

Example 8 (Bernoulli Random Variable). Consider a Bernoulli random variable Y equal to your

income in a month which takes a value of $100 with probability .1 if you fall sick and equal to $600

with probability .9 if you do not fall sick. Then,

E(Y ) = 100× .1 + 600× .9 = $550

var(Y ) = (100− 550)2 × .1 + (600− 550)2 × .9 = 205, 000

std(Y ) =
√

205000 = $452.77

Example 9 (Discrete Uniform Distribution). Consider a random variable Y with values equal to

y which are equal to the number of dots on a throw of a dice. Then, Y has a discrete uniform

distribution (each outcome with probability 1/6) and

E(Y ) = 1× (1/6) + 2× (1/6) + . . . + 6× (1/6) = 3.5

var(Y ) = (1− 3.5)2 × (1/6) + . . . + (6− 3.5)2 × (1/6) = 2.9166

std(Y ) =
√

2.9166 = 1.7078

Example 10 (Binomial Distribution). Suppose I flip a coin 3 times and call it a success if I observe

heads. If we let Y be the number of heads that we observe out of these 3 trials, and if p = .5 is

the probability of a success on any one trial, then Y is a binomial random variable. To compute
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the expected number of successes, their variance and standard deviation, first observe that Y can

take on 4 values (0,1,2,3) and the probabilities of each of these outcomes is (.125,.375,.375,.125)

(see equations 6 & 7 on p. 7) i.e., hence, as in example 7

Outcome 0 1 2 3

PDF (P (y)) 0.125 0.375 0.375 0.125

CDF (F (y < Y ) 0.125 0.500 0.875 1.000

E(Y ) = 0× .125 + 1× .375 + 2× .375 + 3× .125

= 1.5

var(Y ) = (0− 1.5)2 × .125 + (1− 1.5)2 × .375 + (2− 1.5)2 × .375 + (3− 1.5)2 × .125

= .75

std(Y ) =
√

.75 = .866

For many distributions (both discrete and continuous) we can often derive a formula in closed form

the expectation and variance of the distribution. For some of these, see Table 1

Table 1. Moments of Discrete Distributions

Distribution E(y) var(y)

∗Uniform (Discrete) b+a
2

(b−a)(b−a+2)
12

Bernoulli p p (1− p)

Binomial np np (1− p)

Geometric 1
p

1−p
p2

Negative Binomial r
p

r(1−p)
p2

Poisson λ λ

∗ where Y takes values on n integers a, a + 1, . . . , b
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3.2. Linear Function of a Random Variable

Say X is a random variable with mean µX and standard deviation σX . Then a linear transformation

of X to Y , given by Y = a+bX where a and b are some constants, also results in a random variable,

i.e., Y is also a random variable. Further, since Y is a random variable, we can compute its mean

and standard deviation from the mean and standard deviation of X. Thus, we have the following

theorem.

Theorem 4 (Linear function of a random variable). Let X be a random variable where the

expectation and variance of X are E(X) = µX and var(X) = σ2
X . Then a linear transformation of

X, given by

Y = a + bX

where a and b are any constants, gives another random variable Y and

E(Y ) = µY = a + bµX (17a)

var(Y ) = σ2
Y = b2σ2

X (17b)

Proof. By Theorem 2, observe that

E(Y ) = E(a + bX) = E(a) + E(bX) = a + bE(X) = a + bµX

To prove the second part, observe that

σ2
Y = var(Y ) = E

[
(Y − E(Y ))2

]
by definition of variance (see def.8)

= E
[
(a + bX − a− bµX)2

]
by what we just proved above

= E
[
b2(X − µX)2

]
algebraic simplification

= b2E
[
(X − µX)2

]
by theorem 2

= b2σ2
X & by definition of variance of X (see def.8)

�

Example 11. Suppose that your health insurance policy costs you $200 and it stipulates that

you will be responsible 5% of any hospital bills incurred during the coming year. If the mean

and variance of the your total hospital bills is $1500 and $1000 respectively, we can compute the

mean and variance of the total cost to you (i.e., cost of insurance plus the portion of medical bills

that you will be paying out of pocket) by using the linear transformation given above. Let X be

Department of Economics Florida State University Tallahassee, FL 32306-2180



20 Farasat Bokhari (Econometrics (EC04421))

the rv denoting the total hospital bills incurred during the year such that µX =E(X)=1500 and

σ2
X =var(X) = 100. Now let Y be the total cost to you, given by

Y = 200 + .05X

then

µY = E(Y ) = 200 + .05µX = $275

σ2
Y = var(Y ) = .052σ2

X = 2.5

σY = std(Y ) = .05σX = $1.58

4. Joint, Marginal & Conditional Distributions

So far we have considered the PDF, CDF and moments (mean, variance) of a single random variable.

Often, in econometric work we are more interested in the joint distributions of two or more random

variables and the mean and variance of the joint distributions.

4.1. Joint Distribution

The joint probability distribution of two discrete random variables, say X and Y , denoted f(x, y) is

the tabulation of probabilities of all possible combinations of outcomes for the two variables. Thus,

for example, if X can take on 4 values, say 1,2,3 and 4 and Y can take on only 2 value, say A or B,

then listing out the probabilities of all possible combinations {(1, A), (1, B), (2, A), (2, B) . . . (4, A), (4, B)}

in either a table or a graph would be specifying the joint probability distribution. The joint probabil-

ity distribution itself would be the frequency of each of these eight possible outcomes over repeated

trails. More generally, for two discrete random variables X and Y the joint probability distribution

would be

f(x, y) = P(X = x, Y = y).

Similarly, if X and Y were two continuous random variables then the joint probability distribution

would tell us the probability of X and Y within some intervals around specific values x and y, i.e.,

f(x, y) = P(a ≤ x ≤ b, c ≤ y ≤ d).
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Definition 9 (Discrete Joint PDF). Let X and Y be two discrete random variables. Then the

function f(x, y) is known as the discrete joint density function and is defined as

f(x, y) = P(X = x and Y = y)

= 0 when X 6= x and Y 6= y

and
∑
X

∑
Y

f(x, y) = 1

(18)

where
∑

X

∑
Y means summation over all possible values of X and Y.

Definition 10 (Continuous Joint PDF). Let X and Y be two continuous random variables.

Then the function f(x, y) is known as the continuous joint density function and is defined such that

Prob(a ≤ x ≤, c ≤ y ≤ d) =

∫ b

a

∫ d

c

f(x, y) dydx (19)

where f(x, y) ≥ 0 and
∫

x

∫
y
f(x, y) dydx = 1.

Just as we defined the expectation of random variable in the univariate case, we can define the

expectation of any function of two random variables.

Definition 11 (Expected value of a function of random variables). Let X and Y be two

random variable with joint distribution given by f(x, y). Then, for any function g(x, y) of X and

Y , the expected value of g(x, y), denoted E[g(x, y)], is defined as

E[g(x, y)] =


∑

y

∑
x g(x, y)f(x, y) if X and Y are discrete random variables∫ +∞

−∞

∫ +∞
−∞ g(x, y)f(x, y)dxdy if X and Y are continuous random variables

(20)

Definition 12 (Joint Cumulative Distribution). If X and Y are two random variables, then

the joint cumulative distribution, or the bivariate CDF, F (x, y) ≡ P(X ≤ x, Y ≤ y) is given by

F (x, y) =


∑

s≤x

∑
t≤y f(s, t) if X, Y discrete∫ x

−∞

∫ y

−∞ f(s, t) dsdt if X, Y continuous
(21)

Example 12 (Two Dice - Joint Discrete PDF). Suppose you were to throw two dice and you were

interested in knowing joint probabilities of pairs of outcomes such as (6,1), (1,6), (3,4) etc. Then

we can summarize the probability of all possible outcomes using the joint PDF. Let X be number

of dots on dice 1 and and Y be the number of dots on dice 2. The the joint PDF is as given in

Table 2.
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Table 2. Joint Distribution (PDF) of Rolling Two Dice

Marginal

Probability

X=1 X=2 X=3 X=4 X=5 X=6 fY (y) =P(Y = y)

Y=1 1/36 1/36 1/36 1/36 1/36 1/36 1/6

Y=2 1/36 1/36 1/36 1/36 1/36 1/36 1/6

Y=3 1/36 1/36 1/36 1/36 1/36 1/36 1/6

Y=4 1/36 1/36 1/36 1/36 1/36 1/36 1/6

Y=5 1/36 1/36 1/36 1/36 1/36 1/36 1/6

Y=6 1/36 1/36 1/36 1/36 1/36 1/36 1/6

Marginal

Probability 1/6 1/6 1/6 1/6 1/6 1/6 1

fX(x) =P(X = x)

Example 13 (Joint PDF of Difficulty on Exam and Passing the Exam). Next, consider the case

when a student (not fully prepared) faces two random events, (i) if they will pass the exam (Y = 1)

or not (Y = 0) and (ii) if the exam will be easy (X = 1), moderate (X = 2) or tough (X = 3). The

frequency of outcomes from past exams, i.e., the joint probability distribution (for a hypothetical

class with the same instructor and same syllabus), are summarized in Table 3 below.

Table 3. Joint Distribution (PDF) of Passing an Exam and Level of Difficulty

Marginal

Probability

X=1 X=2 X=3 fY (y) =P(Y = y)

Y=1 .20 .40 .20 .80

Y=0 .05 .10 .05 .20

Marginal

Probability .25 .50 .25 1

fX(x) =P(X = x)

In this example, the probability of the joint event that the exam will be moderate and that the

student will fail the exam P(X = 2, Y = 0) is .10 while the probability of the joint event that the

exam will be difficult and that the student will pass P(X = 3, Y = 1) is .20.

4.2. Marginal Distribution

In both the examples above, note the numbers appearing in the last columns and the last rows.

These are equal to the row sums and row columns. For instance, in Table 2 the number 1/6 in

the first row last column is the sum of all the numbers in the first row. Same goes for the sum

of numbers in the second row. Similarly, the number 1/6 in last row first column is the sum of
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numbers in the first column. These numbers in the last column and the last row are called the

marginal probabilities. Notice that these are just the probabilities of observing a 1,2,3,4,5,or 6 on a

roll of single dice. Thus, the marginal probability distribution of a random variable is just another

name for its probability distribution . . . something we have already seen in the previous pages.

Consequently, the sum of the last row itself, or the last column, is 1. This is also equal to the sum

of all the numbers in the table excluding the last row and the last column.

This can be seen more easily in the next table (Table 3). The first three numbers in the first,

.20,.40 and .20 give the probability of the joint events that the student will pass and the exam will

be easy, moderate and tough respectively. But the sum of these three numbers, .80, gives you the

probability that the student will pass the exam. Similarly, the first three numbers in the second

row .05,.10 and .05 give you the probabilities of the joint events that the student will fail the exam

and that the exam will be easy, moderate and tough respectively. The sum of these, .20, is the

probability that the student will fail the exam. These two numbers, .80 and .20 are the marginal

probability distribution (or the probability distribution) and represented by fY (y), for the random

variable Y representing the outcomes that the student will pass (Y = 1) or fail (Y = 0). Likewise,

the marginal probability distribution of the random variable X that the exam will be easy (X = 1),

moderate (X = 2) or tough (X = 3) is given by fX(x) where the probability of receiving an easy

exam is .25 (sum of first column), that of a moderate exam is .50 (sum of second column) and that

of a tough exam is .25 (sum of the third column). The formal definitions follow.

Definition 13 (Marginal Probability Distribution). If X and Y are two random variables

jointly distributed, then the marginal probability distributions (or the marginal PDFs) of X and Y

are

fX(x) =


∑

y f(x, y) for the discrete case∫
y
f(x, t) dt for the continuous case

(22a)

and, fY (y) =


∑

x f(x, y) for the discrete case∫
x
f(s, y) ds for the continuous case.

(22b)

A useful result to consider at this point is the expected value of the sum of two random variables.

Theorem 5 (Expected value of sum of two random variables). Let X and Y be two random

variables. Then

E(X + Y ) = E(X) + E(Y ). (23)
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Proof. To prove this result, we start with the definition of expected value of a function of random

variables, i.e. in definition 11 let g(x, y) = X + Y . Then, by definition 11 the expected value of

(X + Y ) is E(X + Y ) =
∑

x

∑
y(x + y)f(x, y). Next, observe the following:

E(X + Y ) =
∑

x

∑
y

(x + y)f(x, y)

=
∑

x

∑
y

xf(x, y) +
∑

x

∑
y

yf(x, y)

=
∑

x

x
(∑

y

f(x, y)
)

+
∑

y

y
(∑

x

f(x, y)
)

=
∑

x

xfx(x) +
∑

y

yfy(y) (by definition of marginals above)

= E(X) + E(Y ).

�

Example 14 (General Discrete Bivariate Probability Distribution). In the table below, the cell

entries give the probability of the joint occurrence of the associated 1, 2, . . . ,m values of X and

1, 2, . . . , p values of Y , where pij = probability that X = xi and Y = yj. The column and row

totals give the marginal probabilities for X and Y respectively and the period indicates the subscript

over which summation has taken place. Thus, fx(x) = (p1., . . . , pi., . . . pm·)

Table 4. Bivariate Probability Distribution

Marginal

Probability

X1 . . . Xi . . . Xm fY (y) = P(Y = y)

Y1 p11 . . . pi1 . . . pm1 p.1

...
...

...
...

...

Yj p1j . . . pij . . . pmj p.j

...
...

...
...

...

Yp p1p . . . pip . . . pmp p.p

Marginal

Probability

fX(x) = P(X = x) p1. . . . pi. . . . pm. 1
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4.3. Conditional Distribution

In a bivariate distribution, there is a conditioning distribution over y for each value of x (and vice

versa). For instance, the distribution of the random variable Y conditional on a specific value of

the random variable X, say x, is called the conditional distribution of Y given X and is denoted

by f(y|x). Thus, the conditional distribution tells us the probability that Y takes on a value of y

when X is held at the value x, i.e., P(Y = y|X = x). In table 4, the probability that Y = Y1 when

given that X = X1 is

P (Y = Y1|X = X1) =
p11

p1.

and similarly the probability that Y = Y2 when given that X = X1 is

P (Y = Y2|X = X1) =
p12

p1

.

If we enumerated the probabilities of all possible outcomes for Y for a given value of X = X1, we

would have listed the conditional distribution of Y given X = X1, i.e., f(y|X1). Clearly, we can do

this (i) for other values of X and (2) by reversing the process, i.e., compute probabilities of X for

given values of Y . Finally, note that to compute the conditional probabilities, all that we are doing

is that we are dividing the joint probability by the marginal probability.

Definition 14 (Conditional Distribution). If X and Y are two random variables with the joint

distribution f(x, y) and marginal distributions fX(x) and fY (y), then the conditional marginal

probability distributions are

f(y|x) =
f(x, y)

fX(x)
and f(x|y) =

f(x, y)

fY (y)
. (24)

These definitions provide a useful way of computing the joint distribution

f(x, y) = f(y|x) · fX(x) = f(x|y) · fY (y) (25)

Lets make all these ideas concrete by looking at a specific numerical example.

Example 15 (Income and Vacation Expenditure (Hypothetical Population)). Suppose that every

one in a hypothetical population earns either 20, 30 or 40 thousand dollars in a given year (random

variable X) and gets to spend 1, 2, 3, 4, 5 or 6 thousand on vacations (random variable Y). Further,

suppose that the joint probabilities of earing X and spending Y are as given in the upper left part

of table 5. Thus, the probability that someone earns $20,000 and spends $1,000 on vacations is

0.28 while the probability that someone earns $40,000 and spend $4,000 is 0.15. Given this joint

distribution we can compute the marginal distributions as well as conditional distributions.
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Table 5. Joint, Marginal, & Conditional Distributions

Col1 Col2 Col3 Col4 Col5 Col6 Col7 Col8 Col9

X($’000)

Y($’000) 20 30 40 fY (y)

Row1 1 .28 .03 0 .31

Row2 2 .08 .15 .03 .26

Row3 3 .04 .06 .06 .16

Row4 4 0 .06 .15 .21

Row5 5 0 0 .03 .03

Row6 6 0 0 .03 .03

Row7 fX(x) .40 .30 .30 1

Conditional Probabilities

f(y|x)

20 30 40 20 30 40

Row8 1 .7 .1 0 .9 .1 0 1

Row9 2 .2 .5 .1 .31 .58 .12 1

Row10 3 .1 .2 .2 f(x|y) .25 .38 .38 1

Row11 4 0 .2 .5 0 .29 .71 1

Row12 5 0 0 .1 0 0 1 1

Row13 6 0 0 .1 0 0 1 1

Row14 1 1 1

Example from Johnston & Dinardo, p.14

First, the marginal distributions can be computed by by taking the sum of the rows or columns. For

fY (y), given in column 5, .31 is .28+.03 (sum of row 1); .26 is .08+.15+.03 (sum of row 2) and so on.

Similarly for fX(x) given in row 7, take the sum of rows 1 through 6 in column 2 to get .40 and take

the sum of rows 1-6 in column 3 to get .30 and so on. Next, to compute the conditional probabilities,

f(y|x), first note that there are three different conditional distributions, one for each value of X.

The conditional distribution f(y|X = 20) is given is column 2 (rows 8-13), that of f(y|X = 30) is in

column 3 (rows 8-13) and f(y|X = 40) is in column 4 (rows 8-13). To compute the actual numbers

in the conditional distributions (say f(y|X = 20)), all we need to do is divide the joint probability

with the value of the marginal distribution fX(x) at that value of X (in this case 20). Thus, to get

the values for the conditional distribution f(y|X = 20), divide .28 by .40 to get .7 (given in col2,

row8), divide .08 by .40 to get .2 (in col2 row9) and divide .04 by .40 to get .10 (in col2 row10).

Similarly, to compute f(y|X = 30), you would divide each of the joint probabilities in column 3, rows

1-6 by .30 to get the numbers in col3, rows 8-13. Finally, to compute the conditional probabilities,

f(x|y), note that there are five different conditional distributions, one for each value of Y. These

can be computed in the analogous way by dividing the joint probabilities by a specific value of the
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the marginal distribution fY (y). Thus, dividing the joint probabilities in row 1, cols 2-4 by .31 gives

the conditional distribution f(x|Y = 1) and is given in cols 6-8 of row 8.

4.4. Conditional Mean and Variance

Eqns. 13 through 15 give the mean and variance of a distribution of a random variable. These were

the unconditional mean and variance. We can do the same for the conditional distributions.

Definition 15 (Conditional Mean). Conditional mean is the mean of the conditional distribution.

Thus, the conditional mean of Y for a specific value of X = x, denoted E(Y |x), is

E(Y |x) =


∫

y
yf(y|x) dy if y is continuous∑
y yf(y|x) if y is discrete.

(26)

Definition 16 (Conditional Variance). Conditional variance of Y for a specific value of X = x,

denoted var(Y |x), is the variance of the conditional distribution

Var(Y |x) =E
(
(Y − E(Y |x))2|x

)
=E(Y 2|x)− (E(Y |x))2

=


∫

y
(y − E(Y |x))2f(y|x) dy if y is continuous∑
y(y − E(Y |x))2f(y|x) if y is discrete.

(27)

The conditional mean function, E(Y |x) is called the regression of y on x. The conditional variance

is called the scedastic function and is generally a function of x. Typically, the conditional variance

does not vary with x. This does not imply that that var(Y |x) is the same as var(y). All it means is

that the conditional variance is a constant. The cases were the conditional variance does not vary

with x is called homoscedasticity.

In Equation 26 we are computing the mean of Y for a specific value of X = x. If we repeated this

calculation for all specific values of X and then took the mean of all those values, it would give

us back just the mean value of Y , i.e., the unconditional mean of Y . This is known as the law of

iterated expectations.

Theorem 6 (Law of Iterated Expectations). The expectation of Y is the expectation of the

conditional expectation of Y given X = x.

E(Y ) = EX [E(Y |x)]

where EX [E(Y |x)] means
∑

x

[∑
y yf(y|x)

]
fX(x).
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In the equation above, note that on the right hand side, we are first computing the inner conditional

expectation of Y given X = x and then taking the outer expectation EX [.] over the values of X.

For the first (inner) expectation, we use the conditional distribution of Y , i.e. f(y|x), and for the

second (outer) expectation, we use the marginal distribution of X, i.e., fX(x).

Proof.

EX [E(Y |x)] =
∑

x

[∑
y

yf(y|x)
]
fX(x) =

∑
x

∑
y

yf(y|x)fX(x)

=
∑

x

∑
y

yf(y, x) by equation 25 and definition 14

=
∑

y

y
∑

x

f(y, x) by switching the order of summation

=
∑

y

yfY (y) by equation 22b in definition 13

= E(Y ) by definition of expected value

�

Theorem 7 (Decomposition of Variance). In a joint distribution,

var(Y ) = varX [E(Y |x)] + EX [var(Y |x)] (28)

Thus, the unconditional variance of Y is equal to the variance of the conditional expectation plus

the expectation of the conditional variance.

Proof. The proof follows by substituting in the definitions of conditional mean (definition 15) and

of conditional variance (definition 16) on the right hand side of the relationship above and then

applying the results of theorem 3 and the law of iterated expectations (already proved above). To

proceed, observe the following.

First, by theorem 3, for any random variable a we can write var(a) = E[a2]− (E[a])2. Hence, for the

expression varX [E(Y |x)] we can write EX

(
(E(Y |x))2

)
−

(
EX [E(Y |x)]

)2
. But note that by the law

of iterated expectations, the second expression within the squared sign, EX [E(Y |x)], is just E(Y )

and hence (EX [E(Y |x)])2 can be written as (E(Y ))2.

Second, from the definition of conditional variance (definition 15, eqn. 27) EX [V ar(Y |x)] can

be written as EX

(
E(Y 2|x) − (E(Y |x))2

)
. Expanding this out, it becomes, EX

(
E(Y 2|x)

)
−

EX

(
(E(Y |x))2

)
(by theorem 5). But once again, by law of iterated expectations, the fist of these

terms, EX

(
E(Y 2|x)

)
is just the expectation of Y 2, i.e., EX

(
E(Y 2|x)

)
= E(Y 2) (where we are

using the fact that since the law of iterated expectations holds for any random variable, it must
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also be true for the random variable Y 2. Thats it. Now we just put these terms together and

simplify. Thus,

varX [E(Y |x)] + EX [var(Y |x)] = EX

(
(E(Y |x))2

)
−

(
EX [E(Y |x)]

)2
+ EX

(
E(Y 2|x)− (E(Y |x))2

)
= EX

(
(E(Y |x))2

)
− (E(Y ))2 + EX

(
E(Y 2|x)

)
− EX

(
(E(Y |x))2

)
= EX

(
(E(Y |x))2

)
− (E(Y ))2 + E(Y 2)− EX

(
(E(Y |x))2

)
= E(Y 2)− (E(Y ))2

= var(Y ).

�

Example 16 (Example 15 continued). For the data given in example 15, lets first compute (1) E(Y ),

then (2) E(Y |x), then (3) var(Y |x) and finally (4) EX [E(Y |x)] where, the last numeric calculation

is to confirm the law of the iterated expectations, since we already know that answer to (4) should

be the same as that for (1).

(1) The expectation E(Y ) can be computed using just the values of Y and the marginal proba-

bilities for Y , i.e.,
∑

y yfY (y)

So E(Y ) =
∑

y yfY (y) = 2.48

Y 1 2 3 4 5 6

fY (y) 0.31 0.26 0.16 0.21 0.03 0.03

y × fY (y) 0.31 0.52 0.48 0.84 0.15 0.18

(2) Next, to compute the expected value of Y given X = 20, 30 or 40, we will use the values of

Y and the distribution of Y conditional on these three values of X.

X = 20 X = 30 X = 40

Y f(y|x) yf(y|x) f(y|x) yf(y|x) f(y|x) yf(y|x)

1 0.7 0.7 0.1 0.1 0 0

2 0.2 0.4 0.5 1 0.1 0.2

3 0.1 0.3 0.2 0.6 0.2 0.6

4 0 0 0.2 0.8 0.5 2

5 0 0 0 0 0.1 0.5

6 0 0 0 0 0.1 0.6

E (Y |x) =
∑

y f(y|x) 1.4 2.5 3.9
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(3) Next, to compute the variance of Y conditional on X = 20, 30, or 40, once again we use the

conditional distribution f(y|x) but this time multiply them with the square of the deviation

of Y from its conditional mean values (calculated in item 2 above).

X = 20 X = 30 X = 40

f(y|x)× f(y|x)× f(y|x)×
(Y − 1.4)2 f(y|x) (Y − 1.4)2 (Y − 2.5)2 f(y|x) (Y − 2.5)2 (Y − 3.9)2 f(y|x) (Y − 3.9)2

Y=1 0.16 0.7 0.112 2.25 0.1 0.225 8.41 0 0

Y=2 0.36 0.2 0.072 0.25 0.5 0.125 3.61 0.1 0.361

Y=3 2.56 0.1 0.256 0.25 0.2 0.05 0.81 0.2 0.162

Y=4 6.76 0 0 2.25 0.2 0.45 0.01 0.5 0.005

Y=5 12.96 0 0 6.25 0 0 1.21 0.1 0.121

Y=6 21.16 0 0 12.25 0 0 4.41 0.1 0.441

var(Y |x) =
∑

y(y − E(Y |x))2f(y|x) 0.44 0.85 1.09

(4) To do the final computation, multiply E(Y |x) in item 2 with the marginal distribution of

X, i.e., with fX(x) and then add up the answers:

X 20 30 40

fX(x) = 0.4 0.3 0.3

E(Y |x) = 1.4 2.5 3.9

fX(x)× E(Y |x) = .56 .75 1.17

and so, the sum of the last row of the table above is
∑

x fX(x) × E(Y |x) = 2.48, i.e.,

E(Y ) = EX [E(Y |x)] = 2.48 which is the same answer that we got in item 1.

The main thing to note in (1) vs. (4) is that in (1) we got the expectation of Y by multiplying the

values of Y with the marginal distribution of Y (and then adding up these values) where as in (4),

we multiplied the conditional expected values of Y with the marginal distribution of X (and them

added these numbers up) to get the same answer.

4.5. Independence, Covariance & Correlation

We use the concept of independence of events to describe the independence of random variables.

For instance, in your earlier probability classes you may have seen that the probability of event A

and B is equal to the probability of event A multiplied with the probability of event B if the events

were independent (say rolling a dice and tossing a coin at the same time, then the probability of

observing 4 dots on the dice and a head on the coin is just P (4, H) = P (4) × P (H) = 1/6 × 1/2.
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In the case of random variables, we do the same by using the PDFs. Specifically, they are said to

be independent if the conditional distribution is the same as the marginal distribution.

Definition 17 (Independence of random variables). Two random variables are statistically

independent if and only if their joint density is the product of marginal densities.

f(x, y) = fX(x)fY (y) ⇔ x and y are statistically independent. (29)

Intuitively, it is easier to understand independence as that two random variables X and Y are

independently distributed, if information about the value of X does not provide any information

about the value of Y , for instance, P (Y |x) = P (y). In terms of the distributions, this can be written

as f(y|x) = fY (y). In fact, some authors define independence using this relationship, i.e.,

f(y|x) = fY (y) ⇔ x and y are statistically independent. (30)

Which ever of these you start with as the definition of independence, you can always derive the

other condition from it.

Example 17. Prove that if f(x, y) = fX(x)fY (y) then it implies that that f(y|x) = fY (y)

Proof. From Equation 24 and Equation 25 we know that f(x, y) = f(y|x)fX(x). Thus,

f(y|x) =
f(x, y)

fX(x)
from eqns. 24, 25

=
fX(x)fY (y)

fX(x)
given hypothesis

= fY (y)

�

Example 18. Prove that if f(y|x) = fY (y) then it implies that f(x, y) = fX(x)fY (y).

Proof. Left as exercise �

Theorem 8.

f(x, y) = fX(x)fY (y) ⇔ f(y|x) = fY (y). (31)

Proof. Proof given in the previous two examples. �

When considering two random variables, X and Y , we can also measure how much they move

together. For instance, if we draw a large value of Y , do we also typically draw a large value of X?

One way to measure this is by measuring the covariance between X and Y .
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Definition 18 (Covariance). Let X and Y be two random variables. Then, the covariance,

σXY = cov(X, Y ) is the expected value of (X − µX)(Y − µY ).Thus,

cov(X, Y ) = σXY = E
(
(X − µX)(Y − µY )

)
=


∑

x

∑
y(x− µX)(y − µY )f(x, y) if discrete∫

x

∫
y
(x− µX)(y − µY )f(x, y)dxdy if continuous.

(32)

When σXY is positive it means that X and Y move in the same direction, i.e., on average if X is

larger than its mean value µX then so is Y larger than its mean value of µY and conversely, when

X is small (say below its mean value) then on average Y is also small (below its own mean value).

On the other hand, when σXY is negative, it means that X and Y move in opposite directions,

i.e., on average large values of X are associated with small values of Y and vice versa. When the

covariance is zero, it means that there is no such association between X and Y .

It is hard to compare association between two pairs of random variables, say X and Y and between

two other random variables, say W and V because the units are in terms of products of X and Y

(deviated from there means) etc. To overcome this difficulty, we can normalize the covariance by

dividing it by the variance of each of the two variables. This is called correlation, denoted ρXY , and

it measures a degree of linear association between X and Y . Thus,

Definition 19 (Correlation). Let X and Y be two random variables with covariance σXY =

cov(X, Y ). The correlation corr(X, Y ) = ρXY is a measure of linear association between X and Y

and is given by

ρXY =
cov(X,Y )√
var(X)var(Y )

=
σXY

σXσY

.

(33)

Note that the correlation is always between -1 and +1. Let us now review some rules about

correlations, independence and variances of functions of random variables.

Theorem 9 (Properties of independently distributed random variables). If X and Y are

two independently distributed random variables, i.e. if f(x, y) = fX(x)fY (y) then

(1) f(y|x) = fY (y)

(2) f(x|y) = fX(x)

(3) cov(X, Y ) = σXY = 0

(4) cor(X, Y ) = ρXY = 0

(5) E(Y |x) = E(Y ) = µY
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(6) var(Y |x) = var(Y ) = σ2
Y

While it is true that if X and Y are independent, cov(X, Y ) = 0, it is not necessarily true that if

cov(X, Y ) = 0 then X and Y are independent.3

Proof. For proof of (1) and (2), see Theorem 8. For proof of (3) observe the following. Since X and

Y are independent then f(x, y) = fX(x)fY (y). Hence,

σXY =
∑

x

∑
y

(x− µX)(y − µY )f(x, y)

=
∑

x

∑
y

(x− µX)(y − µY )fX(x)fY (y)

=
∑

x

(x− µX)fX(x)
∑

y

(y − µY )fY (y) = 0× 0 = 0.

Proof of (4) follows from the definition of correlation (see Equation 33), i.e., if covariance is zero,

then correlation is zero as well. For proof of (5), observe that

E(Y |x) =
∑

y

yf(y|x)

=
∑

y

yfY (y) = E(Y ).

Proof of (6) is left as an exercise. (Hint: To prove (6), start with the definition of conditional

variance in the form that (conditional) variance is equal to (conditional) expectation of square

minus the square of the (conditional) expectation and then use the result of (5) above.) �

Theorem 10 (Conditional mean and correlation). If conditional mean of Y does not depend

on X, then X and Y are uncorrelated. Thus,

If E(Y |x) = E(Y ) = µX then σXY = ρXY = 0

Proof. (Sketch) First create two new variables Y ∗ = Y − µY and X∗ = X − µX and show that

cov(Y ∗X∗) = cov(Y X). Next, prove the statement above for X∗ and Y ∗. Lets prove the second

part first: Observe that cov(Y ∗X∗) = E[(Y ∗ − µ∗Y )(X∗ − µ∗X)] = E(X∗Y ∗) because µ∗Y = µ∗X = 0.

Next, by law of iterated expectations E(Y ∗X∗) = EX∗ [E(Y ∗|X∗)X∗]. But E(Y ∗|X∗) = E(Y ∗)

by hypothesis and E(Y ∗) = 0. Hence, EX∗(0.X∗) = EX∗(0) = 0 and so cov(Y ∗X∗) = 0. Since

covariance is zero, hence correlation is also zero. Finally, the first part can be proved by direct

3One exception is the case when X and Y are normally distributed. In that case, cov(X, Y ) = 0 does imply

independence of X and Y . We will see this later when we review the normal and other continuous distributions.
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substitution: cov(Y ∗X∗) = E[(Y ∗ − µ∗Y )(X∗ − µ∗X)] = E(Y ∗X∗) = E[(Y − µY )(X − µX)] =

cov(Y X) �

Once again, the converse is not true, i.e., it is not necessarily true that if cov(X, Y ) = 0 then

E(Y |x) = E(Y ).

Finally, we can collect various rules so far in one theorem.

Theorem 11. Let X,Y and Z be three random variables with expectations, µX , µY and µZ . Sim-

ilarly, let σ2
X , σ2

Y and σ2
Z be the variances of the these random variables and σXY , σXZand σY Z be

the pairwise covariances among them. Finally, let a, b and c be three constants. Then,

(1) E(a + bX + cY ) = a + bµX + cµY

(2) var(a + bY ) = b2σ2
Y

(3) var(aX + bY ) = a2σ2
X + b2σ2

Y + 2abσXY

(4) E(Y 2) = σ2
Y + µ2

Y

(5) cov(a + bX + cZ, Y ) = bσXY + cσZY

(6) E(XY ) = σXY + µXµY

Proof. Proofs given here extensively make use of Theorem 2, 3, 4 and 5.

Proof of (1): Use the definition of expectation and theorems 2, 3, 4 and 5. Thus,

E(a + bX + cY ) = E(a) + E(bX) + E(cY )

= a + bE(X) + cE(Y ) = a + bµX + cµY .

Proof of (2): Use the definition of variance, theorems 2, 3, 4, 5 and result (1) above.

var(a + bY ) = E[(a + bY − E(a + bY ))2]

= E[(a + bY − a− bE(Y ))2] = E[b2(Y − E(Y ))2] = b2E[(Y − E(Y ))2]

= b2σ2
Y .

Proof of (3): Use the definition of variance, theorems theorems 2, 3, 4, 5 and the two results above.

var(aX + bY ) = E
[(

(aX + bY )− E(aX + bY )
)2

]
= E

[(
(aX + bY )− aµX + bµY

)2
]

= E
[(

a(X − µX) + b(Y − µY )
)2

]
= E[a2(X − µX)2] + E[b2(Y − µY )2] + 2E[ab(X − µX)(Y − µY )]

= a2var(X) + b2var(Y ) + 2abcov(X,Y )

= a2σ2
X + b2σ2

Y + 2abσXY .
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Proof of (4): Start by adding and subtracting µY from Y 2 and then use the definition of expectation.

Expand the squares and apply theorems 2, 3, 4, 5 as well as the results above. In the last step, use

the definition of variance.

E(Y 2) = E
[
((Y − µY ) + µY )2

]
= E

[
((Y − µY )2 + µ2

Y + 2µY (Y − µY )
]

= E[(Y − µY )2] + µ2
Y + 2µY E[Y − µY ]

= σ2
Y + µ2

Y where, note that E[Y − µY ] = 0.

Proof of (5): Start with the definition of covariance, use theorems 2, 3, 4, 5 and the previous results.

cov(a + bX + cZ, Y ) = E
[(

a + bX + cZ − E(a + bX + cZ)
)(

Y − µY

)]
= E

[(
b(X − µX) + c(Z − µZ)

)(
Y − µY

)]
= E

[
b(X − µX)(Y − µY ) + c(Z − µZ)(Y − µY )

]
= bE[(X − µX)(Y − µY )] + cE[(Z − µZ)(Y − µY )]

= bcov(XY ) + ccov(ZY )

= bσXY + cσZY .

Proof of (6): Similarly, first subtract and add the means of the X and Y , and then apply the

definition of expectation. Use theorems 2, 3, 4, 5 and the previous results as necessary and in the

last step, apply the definition of covariance and the use the fact that E[Y − µY ] = E[X − µX ] = 0.

E(XY ) = E
[(

(X − µX) + µX

)(
(Y − µY ) + µY

)]
= E[(X − µX)(Y − µY )] + µXE(Y − µY ) + µY E(X − µX) + µXµY

= σXY + µXµY .

�

5. Continuous Distributions

5.1. Normal, Standard and Bi-variate Normal Distributions

Normal Distribution. A continuous random variable X with the normal distribution is the

usual familiar bell shaped curve. Its parameters are the mean (µX) and variance (σ2
X) of the random

variable and the PDF is given by

N(µX , σ2
X) = f(x) =

1

σX

√
2π

exp
(
−1

2

(x− µX)2

σ2
X

)
(34)
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Same µ,Different σ
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Figure 9. Normal Distributions, PDFs and CDFs

Because of the importance and use of this distribution, special notation is often used for this

distribution. The normal distribution with parameters µ and σ2 (where I am now suppressing the

subscript X for shorthand) is written as N(µ, σ2). Thus, if a random variable Y had a normal

distribution with µ = 1 and σ2 = 4, we could convey this information by simply writing Y ∼

N(1, 4).

A normal density function with parameter µ (mean) and σ2 (variance) is symmetric around µ and

has 95% of its probability mass between µ − 1.96σ and µ + 1.96σ. In general, however, it is also

true that distributions that are ‘approximately’ bell shaped, the following empirical rule applies:

(1) Approximately 68.2% of the area under the curve lies between µ± σ

(2) Approximately 95.4% of the area under the curve lies between µ± 2σ

(3) Approximately 99.7% of the area under the curve lies between µ± 3σ

Mean =µ,Variance=s
2

µµ-σ µ+σµ-2σ µ+2σµ-3σ µ+3σ
68.2%

95.4%

99.7%

Figure 10. Area under a normal curve

Theorem 12 (Linear Combination of Two Normal Distributions). If X and Y are two

normal distributions such that X ∼ N(µX , σ2
X) and Y ∼ N(µY , σ2

Y ) and that they are independent,

then for any two constants a and b if W = aX + bY then

W ∼ N [(aµX + bµY ), (a2σ2
X + b2σ2

Y ).
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Thus, a linear combination of normally distributed variables is itself normally distributed and this

result can be generalized to a linear combination of more than just two random variables.

Standard Normal Distribution. A special case of the normal distribution is the case when

µ = 0 and σ = 1. In this case it is called the standard normal distribution, or N(0, 1). Most

authors use the letter Z to denote the random variable with the standard normal distribution

N(0, 1). Thus,

N(0, 1) = f(z) =
1√
2π

exp
(
−1

2
z2

)
(35)

Similarly, the greek letter Φ is reserved for the cumulative distribution (CDF) of Z. Thus, for some

number Z = c, Φ(c) is the probability that the standard normal variable Z is less than or equal

to c. The standardized distribution can be used to compute probabilities that a normal random

variable is between certain values of is less than some specific value. For instance, say Y is a random

variable with normal distribution such that Y ∼ N(1, 4) and we want to know the probability that

Y ≤ 2. Then, we can compute this easily by first covering Y to a standard normal variable Z

and then looking up the appropriate probability in the tables for the standard normal distribution

(Table D.1. on page 960 in your text book). Here is how we would compute it: Let

Z =
Y − µ

σ
(36)

Then Y = 2 corresponds to Z = 2−1
2

= .5 To compute P(Y ≤ 2) we need to compute P(Z ≤ .5)

i.e., Φ(.5) Now, if you look at table D.1. on page 960 of your text book, this can be read off from

the table as 0.5 + .1915 = .6915 Thus, we have the following rule.

If Y ∼ N(µ, σ2) and c1 and c2 are any two numbers such that c1 ≤ c2 then

(1) P(Y ≤ c2) = P(Z ≤ d2) = Φ(d2)

(2) P(Y ≥ c1) = P(Z ≥ d2) = 1− Φ(d2)

(3) P(c1 ≤ Y ≤ c2) = P(d1 ≤ Z ≤ d2) = Φ(d2)− Φ(d1)

where d1 = (c1 − µ)/σ and d2 = (c2 − µ)/σ

Bivariate Normal Distribution. The normal distribution can be extended to the joint distri-

butions as well. In the case of two random variables, X and Y , if they have a joint distribution

which is also normal, it is called the bivariate normal distribution. Where as a univariate nor-

mal distribution has just two parameters (µ and σ), a bivariate distribution has five parameters.

Thus, if X and Y have a bivariate normal distribution then the parameters of the distribution are
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µX , σX , µY , σY and ρXY . These parameters correspond to the mean and standard deviations of the

two random variables and the correlation between them.

Theorem 13 (Bivariate Distributions). If X and Y have a bivariate normal distribution with

parameters µX , σX , µY , σY and ρXY then

(1) for any two constants a and b, W = aX + bY has a distribution given by

W ∼ N [(aµX + bµY ), (a2σ2
X + b2σ2

Y + 2abσXY )]

(2) fX(x) ∼ N(µX , σX) and fY (y) ∼ N(µY , σY ), i.e., if the joint distribution is bivariate normal,

then the marginal distributions will also be normal.

(3) If ρXY = 0 then the variables X and Y are independently distributed

Note that in theorem 9 we noted that if two random variables X and Y are independent then,

ρXY = 0 but that in general, if ρXY = 0 then it does not imply that the random variables are

independently distributed. However, in the case of bivariate normal distributions, it is true that if

ρXY = 0 then the random variables are independently distributed.

5.2. The χ2, F and t Distributions

Three other important continuous distributions that we will be using extensively in the rest of the

course are the χ2, F and t distributions and will mostly be used for the purpose of hypotheses

testing.
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Figure 11. χ2 Distributions with k degrees of freedom

χ2 Distribution. A χ2 distribution (pronounced chi-square) is the sum of k squared independent

standard normal distributions. The parameter of the distribution is k, i.e., the number of Z2

distributions added up and is called the degrees of freedom of the chi-squared distribution. Thus, if
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Z1, Z2, . . . , Zk are k independent standardized normal variables (i.e., Zi ∼ N(0, 1) for i = 1, 2, . . . k)

and

Y =
k∑

i=1

Z2
i then Y ∼ χ2(k). (37)

i.e, Y has a χ2 distribution with k degrees of freedom and is written as Y ∼ χ2(k). Figure 11 shows

the PDF and CDF for the case when k = 2, 5, and 10. Note the following properties.

(1) A random variable with a χ2 distribution only takes on positive values.

(2) A χ2 distribution is skewed to the right but for large values of k it becomes more symmetrical.

(3) The mean and variance of the χ2 distribution are k and 2k respectively.

(4) If Y1 and Y2 are two independent χ2 variables with k1 and k2 degrees of freedom then Y1 +Y2

is also a χ2 variable with k1 + k2 degrees of freedom.

Example 19. Suppose that a random variable Y is such that Y ∼ χ2(20), i.e. it has a χ2 distribu-

tion with 20 degrees of freedom. Then, as table D.4 in your text book shows, the probability that

Y > 10.85 is 0.950. Similarly, the probability that Y > 39.997 is 0.005.

F Distribution. If Y1 and Y2 are two independent χ2 variables with k1 and k2 degrees of freedom

respectively, and you define a new variable X such that

X =
Y1/k1

Y2/k2

then X ∼ Fk1k2 (38)
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Figure 12. F Distributions with k1, k2 degrees of freedom

i.e., X has what is called the (Fisher’s) F-distribution with parameters k1 and k2 (and written as

Fk1k2). These parameters are called the numerator and denominator degrees of freedom respectively.

Figure 12 shows the PDF and CDF for the case when (1) k1 = 2, k2 = 2; (2) k1 = 50, k2 =

50; and (3) k1 = 10, k2 = 2. Note the following properties.
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(1) A random variable with a Fk1k2 distribution only takes on positive values.

(2) Like the χ2 distribution, Fk1k2 is also right skewed but as k1 and k2 become large, the Fk1k2

distribution approaches the normal distribution.

(3) The mean of a F distributed variable is k2/(k2−2) and is defined for k2 > 2 and the variance

is

2k2
2(k1 + k2 − 2)

k1(k2 − 2)2(k2 − 4)

and is defined for k2 > 4.

(4) If Z1, Z2, . . . , Zk1 are k1 standard normal variables, then (Z2
1 +Z2

2 + . . .+Z2
k1

)/k1 has a Fk1∞

distribution.

(5) Equivalently, a χ2 random variable with k1 degrees of freedom divided by k1 has a Fk1∞

distribution, i.e., if Y ∼ χ2(k1) then Y/k1 ∼ Fk1∞.

(6) Alternatively, we can reexpress the last two items as saying that if the denominator degrees

of freedom in k2 is fairly large, then the following relationship holds between the χ2 and F

distributions:

k1Fk1∞ = χ2(k1). (39)

Example 20. If Y ∼ F6,9 i.e. the random variable Y has a F distribution with k1 = 6 and k2 = 9

degrees of freedom, then what is the probability that we will observe a value of Y such that (i)

Y ≥ 1.61, (ii) Y ≥ 3.37 and (iii) Y ≥ 5.80? To compute the answers, we can look at table D.3

(p.962) of your text book. These correspond to probabilities of .25, .05 and .01 respectively.

Example 21. (1) In table D.3 of your text book, look up the critical F value for probability p= .01

when k1 = 10 and k2 = ∞. (2) Next, look up the critical chi2 value corresponding to p = .01 and

degrees of freedom equal to 10. (3) Finally, compare the two answers in light of the last property

stated for the F distributions. Answer: (1) 2.32; (2) 23.2093; (3) per the last property given for the

F distributions, we know that if k2 is large (here ∞), then the F value times k1 should be about

the same as the value from the χ2 with k1 degrees of freedom. Thus, answer in (1) multiplied by

10 should be about the same as the answer in (2), which it is!!

t Distribution. If Z and X are two independent random numbers such that Z has a standard

normal distribution (N(0,1)) and X is a Chi-square random variable with k degrees of freedom and

is independently distributed from Z (ie., Z ∼ N [0, 1] and X ∼ χ2(k) and independent from Z),
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then the random variable Y defined as

Y =
Z√
X/k

∼ tk (40)

has a students t-distribution with k degrees of freedom.

The PDF of the student t distribution has a bell shape curve (like the normal distribution) but

has more mass in the tails (ie., it is a fatter bell shaped curve). The difference in t distribution

and the standard normal distribution is for low values of k (the lower the value of k the fatter the

t-distribution), and disappears for large values of k. Infact, t∞ is equal to the normal distribution.

Figure 13 shows the PDF for the case when (1) k = 5(2) k = 120 which can be regarded as the

normal distribution. Note the following properties:
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Figure 13. t Distributions with k=5, k=120 degrees of freedom

(1) The t-distribution is symmetrical like the normal distribution but has more mass in the tails.

(2) A k becomes large, it approximates the standard normal distribution

(3) The mean is zero and variance is k/(k − 2) and in the limit is equal to 1.

Example 22. If Y is a random variable with t10 distribution, what is the probability that we will

observe a value of Y which is equal to or larger than (i) 1.812,(ii) 2.764? The answers are .05 and

.01, which can be found by looking up in table D.2 in the text book.

Example 23. Suppose that Y had a t500 distribution. What is the probability that we will observe

a value of Y that is 1.96 or larger? From table D2., the answer is .025. Since the degrees of freedom

are large, we can also look up the answer in the Z tables (table D1). For Y to be as large as 1.96,

the probability is 1-(.5+.4750)=.025.
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6. Sampling and Sampling Distributions

If we know the underlying probability distribution function, along with the parameters, then we

know the mean and variance etc. Eg. Income in a hypothetical population is distributed as

N [20K, 5K] then we know that the population mean and variance are, µY = 20K, σ2
Y = 5K,

where Y is the value of the random variable income.

Suppose instead that we took 1 sample of 20 people from this population and found the sample

average to be Y = 19.5K. Can be be confident that the number 19.5 is ’pretty close’ to the true

population mean?

Next, suppose that we repeated the process of sampling, say 15 times, and each time computed

the sample average. How would the average of the sample averages compare to the true underling

population mean?

To answer these, we need to distinguish between a population and a sample and develop the following

concepts:

(1) Random sampling and IID draws.

(2) Sample average itself is a random variable.

(3) Distribution function of the sample average.

(4) Mean and variance of the sample average.

(5) Law of large numbers.

(6) Central limit theorem.

First some terminology . . .

Simple Random Sampling. A sampling procedure that assures that each element in the pop-

ulation has the same probability of being selected in the sample is referred to as simple random

sampling.

Random Sample. Suppose that a population consists of exactly 1000 values of Y, (Y1, Y2, . . . , Y1000)

and you randomly select 20 of these values, Y1, Y2, . . . , Y20. Because you selected them randomly,

the values of these 20 observations can change from one sample to the next one. Hence, each of

these Yi is a random variable, i.e., Y1, Y2, . . . , Y20 are all random variables.

Identically Distributed. Since Y1, Y2, . . . , Y20 are drawn from the same population, the marginal

distribution of Yi is the same for each value of i = 1, . . . , 20 and is equal to the marginal distribution
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of Y in the population. When Yi has the same marginal distribution for each value of i = 1, . . . , 20,

then Y1, Y2, . . . , Y20 are said to be identically distributed.

Independently and Identically Distributed. If knowing the value of Y1 provides no infor-

mation about the value of Y2 then the conditional distribution of Y2 given Y1 is the same as the

marginal distribution of Y2, i.e., Y2 is independently distributed of Y1. Thus, if Yi has the same

marginal distribution for each value of i = 1, . . . , 20, and each of these is independently distributed

then Y1, Y2, . . . , Y20 independently and identically distributed (called iid).

Simple random sampling results is iid draws of Y1, Y2, . . . , Y20

Definition 20 (Sample Average). If a sample consists of n observations, Y1, Y2, . . . , Yn, then the

Simple Average, denoted Y is

Y =
1

n

n∑
i

Yi. (41)

Similarly,

Definition 21 (Sample Variance). If a sample consists of n observations, Y1, Y2, . . . , Yn, then the

Simple Variance denoted s2 is,

s2 =
1

n− 1

n∑
i

(Yi − Y )2. (42)

Note that both, the sample average and the sample variance, are themselves random variables. Each

will have its own PDF and CDF as well as the expected values and variance. The next theorem

provide the expected value and variance of the the sample average when the expected value and

variance of the underling population is known and the draws are iid.

Theorem 14 (Mean and Variance of Y ). Let Y1, Y2, . . . , Yn, be iid draws from a population such

that the mean and variance of Yi are µY and σ2
Y . Then,

(1) E(Y ) = µY

(2) var(Y ) =
σ2

Y

n
and sd.(Y ) = σY√

n

Proof. (for 1) Start with the definition of a sample average, take the sum of expected values of

random variables and then use the fact the these are iid draws and hence E(Yi) = µY

E(Y ) = E(
Y1 + Y2 + . . . + Yn

n
) =

1

n
E(Y1 + Y2 + . . . + Yn)

=
1

n
(E(Y1) + E(Y2) + . . . + E(Yn)) =

1

n

n∑
i

E(Yi) = µY .
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For (2): Observe that since Yi are iid, then cov(Yi, Yj) is zero between any two pairs. Next use item

(3) in Theorem 11 where a = b = 1/n. Then,

var(Y ) = var(
1

n

∑
i

Yi) = var(Y1/n + Y2/n + . . . + Yi/n)

= var(aY1 + aY2 + . . . + aYi) = a2var(Y1 + Y2 + . . . + Yn) = a2(nσ2
Y ) = σ2

Y /n.

�

Note two things about this theorem. First, it tells us that on average, the sample average will be

equal to the average of the population average (i.e., the expected value of the sample average is

equal to the population average) and two, that the variance of the sample average is equal to the

variance of the population divided by the sample size. Thus, any one value of the sample average

will not be equal to the population average, (only its expectation is equal to the population average)

but very importantly, the variance of the sample average will decrease as the sample size increases

(ie., as sample size increases). This begs the question as to what happens to the sample average

if the sample size becomes indefinitely large? Intuitively, if n gets very large, the variance of the

sample average will go to zero and the sample average itself will get very close to the population

average. These idea are made more precise by the concept of consistency and the law of large

numbers.

Definition 22 (Convergence in Probability). Let S1, S2, . . . , Sn, . . . be a sequence of random

variables indexed by the sample size. Then, the sequence {Sn} is said to converge in probability

to limit µ (written as Sn
p−→ µ) if the probability that Sn is within ±δ of µ tends to one as n →∞

for every δ > 0. That is

Sn
p−→ µ if and only if lim

n→∞
Pr[|Sn − µ| < δ] = 1. (43)

Definition 23 (Consistency). If Sn
p−→ µ then Sn is a consistent estimator of µ.

In the definitions above, think of S1, S2 . . . as sample averages Y 1, Y 2, . . . , Y n indexed by the sample

size.

Theorem 15 (Law of Large Numbers). Let Y1, Y2, . . . , Yn be iid draws and E(Yi) = µY and

var(Yi) < ∞ then

Y n
p−→ µY . (44)

The law says that as the sample size increases, the sampling distribution of Y concentrates around

the population means µY . Further, as the sample size increases, the variance of Y decreases and
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that the probability that Y falls outside of a small interval ±δ of the population mean goes to zero.

This is most easily seen by observing that in theorem 14, the variance of Y is
σ2

Y

n
which goes to zero

as n becomes large.

Theorem 16 (Distribution of Y ). Let Y1, Y2, . . . , Yn be iid draws from N [µY , σ2
Y ]. Then,

Y ∼ N [µY , σ2
Y /n]. (45)

Proof. Per Theorem 12, sum of independent and normal distributions is itself a normal distribution.

Hence, sum of Y1, Y2, . . . , Yn will be normally distributed. Further, since Y1, Y2, . . . , Yn are iid draws

from ∼ N [µY , σ2
Y ] then per theorem 14, the mean and variance of (Y ) is µY and σ2

Y /n.

�

Theorem 16 states that if Y1, Y2, . . . , Yn were iid draws from N [µY , σ2
Y ]. then the exact distribution

of Y is N [µY , σ2
Y /n]. However, the central limit theorem (stated formally later) states that even if

Y1, Y2, . . . , Yn were not drawn from a normal distribution, then as the sample size gets large, the

distribution of Y approximates a normal distribution. Specifically, under very general conditions,

the standardized sample average converges in distribution to a normal random variable. To formalize

this notion, we need to develop the concept of convergence in distribution (which is different from

the concept of convergence in probability)

Convergence in Distribution. The basic idea of convergence in distribution is when in some

limit the CDF of a sequence of random numbers converges to some CDF. For instance, recall that
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Figure 14. CDF of χ2
3/3 and of F3, k where k = 5, 10, 30

earlier when discussing the properties of a F distribution, we said the if the denominator degrees of

freedom were vary large (or ∞) while the numerator degrees of freedom were some fixed number,say

3, then the random numbers drawn from this distribution would be the same as if we drew random

numbers from a χ2 distribution and divided them by 3. More precisely, the distribution functions,
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or the CDFs would be the same. To understand the idea of convergence in distribution, consider the

of CDF random numbers drawn from a F distribution with 3 degrees of freedom in numerator and

k degrees of freedom in the denominator. Now start increasing the denominator degrees of freedom,

from say k = 3, k = 10, k = 30, and so on. As k gets larger, the CDF would start converging in

distribution to the CDF of random numbers drawn from a χ2 distribution with 3 degrees of freedom

where each random variable is divided by 3. This is shown graphically below.

Definition 24 (Convergence in Distribution). Let S1, S2, . . . , Sn, . . . be a sequence of random

numbers indexed by the sample size and each with a cumulative distribution function F1(S1), F2(S2),

. . . , Fn(Sn), . . . . Then the sequence of random variables {Sn} is said to converge in distribution

to S (denoted Sn
d−→ S) if the distribution functions {Fn(Sn)} converge to F(S), the distribution

of S. Thus.

Sn
d−→ S if and only if lim

n→∞
Fn(Sn) = F (S) (46)

where the limit holds at all points S at which the limiting distribution F is continuous.

To make the definition above a little easier to understand, think of S1, S2, . . . , Sn, . . . as standardized

sample averages. Thus, S1 is
√

n(Y 1 − µY )/σY and is a random variable which has a cumulative

distribution function. Call it F1(S1). Similarly, S2 is also a standardized sample average from a

different sample size. This too is a random number and has a cumulative distribution. Call it

F2(S2). And so on. Then the definition above says that we say that the sequence Sn converges

in distribution to S, if the cumulative distribution Fn(Sn) becomes closer and closer to a limiting

distribution F (S) as n increases, i.e., lim
n→∞

|Fn(Sn)− F (S)| = 0 at all (continuity) points of F(S).

Also, compare convergence in probability with convergence in distribution. If Sn
p−→ µ then as n

increases, Sn becomes close to µ with high probability while if Sn
d−→ S then the distribution of Sn

becomes close to the distribution of S.

Theorem 17 (Central Limit Theorem). Let Y1, Y2, . . . , Yn be iid with E(Yi) = µ and var(Yi) =

σ2
Y such that 0 < σ2

Y < ∞. Then, as n →∞ the distribution

√
n(Y − µY )

σY

d−→ N(0, 1) (47)

Roughly, the central limit theorem states that the distribution of the sum of a large number of inde-

pendent, identically distributed variables will be approximately normal, regardless of the underlying

distribution.

Lets see the Central Limit Theorem in action

Department of Economics Florida State University Tallahassee, FL 32306-2180



Farasat Bokhari (Review of Probability & Statistics) 47

Example 24. Let X be a random variable such that it is drawn from a continuous uniform distri-

bution between 0 and 1, i.e., let X ∼ UniformContinious[0,1] (the PDF is shown in figure below).

Then do the following:

Figure 15. Parent Distribution, Uniform[0,1]

(1) Draw a sample of size 2. Compute the sample average. Repeat the process many times &

draw the PDF of X2.

(2) Draw a sample of size 3. Compute the sample average. Repeat the process many times &

draw the PDF of X3.

(3) Draw a sample of size 4. Compute the sample average. Repeat the process many times &

draw the PDF of X4.

(4) Draw a sample of size 8. Compute the sample average. Repeat the process many times &

draw the PDF of X8.

(5) Draw a sample of size 16. Compute the sample average. Repeat the process many times &

draw the PDF of X16.

(6) Draw a sample of size 32. Compute the sample average. Repeat the process many times &

draw the PDF of X32.

The PDFS for the cases above are given below.
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PDF of X2 PDF of X3

PDF of X4 PDF of X8

PDF of X16 PDF of X32

Figure 16. PDF of Sample Averages - CLT
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7. Estimators

Definition 25 (Estimator). Let θ be a population parameter. Then, θ̂ is an estimator of θ if it is

a function of the sample data and does not depend on the population parameter θ. Thus,

θ̂ = g(Y1, Y2, Y3 . . . , Yn) (48)

The numerical value of the estimator is an estimate of the population parameter.

Example 25. Let the mean value of annual income of all employed women in a given population

be µf . Then, µf is a population parameter. If you collected data on a sample of size n and used

this data to compute the sample average,

Y =
1

n

n∑
i

(Y1 + Y2 + Y3 + . . . + Yn)

then the sample average would be an estimator of the population parameter. In this example, the

population parameter θ is µf , the estimator θ̂ is the sample average Y and the numerical value of

computed sample average is an estimate of the population parameter.

Other examples include cases where population parameter of interest θ is (i) the population variance,

(ii) the maximum value in the population, (iii) the minimum value etc. For each of these population

parameters you can construct estimators θ̂ such as the sample variance, the maximum value observed

in the sample or the minimum value observed in the sample.

7.1. Properties of Estimators

In particular note that for the same population parameter, we may have more than 1 estimator

available for it. For instance, let θ be the true population average µ, i.e, θ = µ. Then you can

imagine constructing three different estimators θ̂ for the population parameter θ. Let these be

θ̂1, θ̂2, θ̂3 where

(1) θ̂1 is just the sample average Y .

(2) θ̂2 is the first observation in a sample, and

(3) θ̂3 is the weighted average of n even number of observations where each odd observation is

weighted 1/2 and each even observation is weighted 3/2, (ie. θ̂3 = (1/n)[(1/2)Y1 +(3/2)Y2 +

(1/2)Y3 + (3/2)Y4 + . . . + (1/2)Yn−1 + (3/2)Yn])

The obvious question is which of these estimators is a good one? Which one should we use?
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Since we are interested in knowing the value of the true population parameter (i.e., the population

mean) based on a a sample, intuitively, it seems that the first estimator θ̂1 is in some sense better

than the other two. For instance, in the second estimator we are not using all the available informa-

tion (i.e. different values in the sample) but instead only one observation. In the third estimator, we

are applying weights to the observations in some arbitrary fashion. We compare estimators based

on three criteria: (1) Unbiasedness, (2) Consistency and (3) Efficiency.

Unbiasedness. If we come up with an estimator for some population parameter, then we would

like the estimator to be such that if we repeated the exercise of sampling many times over and

used the same estimator, then the average value of the estimator, i.e., its expected value, should

be the same as the value of the underling population parameter. In other words, we would like the

estimator to be not biased.

Definition 26. (Unbiasedness) An estimator θ̂ is an unbiased estimator of θ if

E(θ̂) = θ (49)

and if the estimator is biased then the amount of bias can be measured as

B = Bias = E(θ̂)− θ (50)

Example 26. Suppose that the population parameter of interest is the population mean, i.e., θ = µ.

Then if we construct as estimator θ̂ so that it is just the sample average, i.e., θ̂ = Y , then is this

estimator unbiased? If the sample was drawn randomly, then the values of Y, Y1, Y2, . . . , Yn, will be

be iid draws from a population and hence by theorem 14, E(Y ) = µY . Thus, the estimator θ̂ = Y

is unbiased.

Consistency. Another desirable property that we would like for an estimator is that if we in-

creased the sample size, then the value of the estimator should start getting close to the value of

the population parameter. In other words, if we increased the sample size, then we would like

the our estimate to converge to the value of the population parameter. Simply put, we want our

estimator to be consistent. We have already seen the definition of consistency (recall convergence

in probability). Thus,

Definition 27. (Consistent) An estimator θ̂ is a consistent estimator of θ if

θ̂
p−→ θ (51)
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Example 27. Suppose that the population parameter of interest is the population mean, i.e., θ = µ.

Then if we construct as estimator θ̂ so that it is just the sample average, i.e., θ̂ = Y , then is this

estimator consistent? If the sample was drawn randomly, then the values of Y, Y1, Y2, . . . , Yn, will

be be iid draws and E(Yi) = µ and as long as var(Yi) < ∞, then from the law of large numbers

(theorem 15) the estimator θ̂ = Y is consistent.

Efficiency. Suppose that you have two candidates for an estimator of θ (say θ̂1 and θ̂2) and

suppose that both are unbiased and consistent. How do we choose between them? One way would

be to look at the distributions of θ̂1 and θ̂2 and pick the one which has a smaller spread around its

mean, ie., one with a smaller variance. The estimator with the smaller variance would be called

more efficient compared to the other one. This so, because it uses the data in the sample more

efficiently. Thus,

Definition 28. (Efficiency) Let θ̂1 and θ̂2 be two estimators of a population parameter θ and

suppose that both are unbiased (ie, E(θ̂1) = E(θ̂2) = θ). Then θ̂1 is more efficient relative to θ̂2 if

var(θ̂1) < var(θ̂2) (52)

Example 28. Suppose that the population parameter of interest is the population mean, i.e., θ = µ

and suppose that we construct two estimators θ̂1 = Y and θ̂2 in which the observations are weighted

alternatively as (1/3) and (2/3), i.e. θ̂2 = (1/3)Y1 + (2/3)Y2 + (1/3)Y3 + (2/3)Y4 + . . . .). Then in

order to compare the efficiency of the two estimators, we need to compare the variance of the two,

ie., var(θ̂1) with var(θ̂2).

Example 29. Suppose that the population parameter of interest is the population mean µY , ie,

θ = µY . If we collect a random sample from the population so that the draws are iid and construct

three estimators for θ given below, then based on unbiasedness, consistency and efficiency, which of

these three should we use?

(1) θ̂1 = Y .

(2) θ̂2 = Y1 (ie, take the first observation in the sample as an estimate of population mean), and

(3) θ̂3 is the weighted average of n even number of observations where each odd observation is

weighted 1/2 and each even observation is weighted 3/2, (ie. θ̂3 = (1/n)[(1/2)Y1 +(3/2)Y2 +

(1/2)Y3 + (3/2)Y4 + . . . + (1/2)Yn−1 + (3/2)Yn])

Biased? Lets check the unbiasedness of the three estimators

(1) θ̂1 = Y : Since the draws are iid, then by theorem 14, E(Y ) = µY and hence it is unbiased.
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(2) θ̂2 = Y1 : Again, since the draws are iid, then E(Yi) = µY for all i and hence also for i=1,

E(Y1) = µY . So, this estimator is also unbiased.

(3) θ̂3 = as given earlier : For this one lets explicitly compute the expected value. Then,

E(θ̂3) = E
[ 1

n

(
(1/2)Y1 + (3/2)Y2 + (1/2)Y3 + (3/2)Y4 + . . . + (1/2)Yn−1 + (3/2)Yn

)]
=

1

n
E

[(
(1/2)Y1 + (3/2)Y2 + (1/2)Y3 + (3/2)Y4 + . . . + (1/2)Yn−1 + (3/2)Yn

)]
=

1

n

[1

2
E(Y1) +

3

2
E(Y2) +

1

2
E(Y3) +

3

2
E(Y4) + . . . +

1

2
E(Yn−1) +

3

2
E(Yn)

]
=

1

n

[
(
1

2
µY +

3

2
µY ) + (

1

2
µY +

3

2
µY ) + . . . + (

1

2
µY +

3

2
µY )

]
=

1

n

[n(2µY )

2

]
= µY .

So, this estimator is also unbiased.

Consistency? Lets check the consistency of the three estimators

(1) θ̂1 = Y : Since the draws are iid, then by law of large numbers (theorem 15) Yn
p−→ µY and

hence it is a consistent estimator.

(2) θ̂2 = Y1 : For this estimator to be consistent, it would mean that as we drew larger and

larger samples, then the probability that first observation takes the same value as the mean

of the population approaches 1. This is clearly not true. To show this, you could argue that

the variance of θ̂2 stays constant as n gets large: var(θ̂2) = var(Y1) and since these are iid

draws, var(Y1) = var(Yi) = σ2
Y . Since this is not a function of n, the variance does not

approach zero as n increases. Thus, this estimator is not consistent.

(3) θ̂3 = as given earlier : To check for the consistency of this estimator, we can first compute its

variance. The variance of this estimator turns out to be 1.25σ2
Y /n (shown below). Because

var(θ̂3) −→ 0 as n −→∞ hence θ̂3 is a consistent estimator.

var(θ̂3) = var
[ 1

n

(1

2
Y1 +

3

2
Y2 + . . . +

1

2
Yn−1 +

3

2
Yn

)]
=

1

n2

[(1

4
var(Y1) +

9

4
var(Y2) + . . . +

1

4
var(Yn−1) +

9

4
var(Yn)

)]
but var(Y1) = var(Y2) = var(Y3) = . . . = var(Yn) = var(Yi) = σ2

Y , and so

var(θ̂3) =
1

n2

[ n

4× 2
var(Yi) +

9n

4× 2
var(Yi)

]
=

5

4n
var(Yi) = 1.25σ2

Y /n.

So θ̂1 and θ̂3 are consistent estimators but θ̂2 is not.
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Efficiency? Lets check the relative efficiency of the three estimators (relative to each other) even

though we know that the second estimator is not even consistent. To do this we need the variance

of the three estimators.

(1) θ̂1 = Y : Since the draws are iid, then by theorem 14, var(θ̂1) = σ2
Y /n

(2) θ̂2 = Y1 : Similarly, var(θ̂2) = σ2
Y

(3) θ̂3 = as given earlier : We already calculated the variance of this estimator as var(θ̂3) =

1.25σ2
Y /n.

• For n ≥ 2 the variance of θ̂1 and θ̂3 is less than the variance of θ̂2. Hence, for n ≥ 2 θ̂1 and

θ̂3 are relatively more efficient than θ̂2.

• For all values of n, 1.25σ2
Y /n > σ2

Y /n, i.e., var(θ̂1) < var(θ̂3). Hence θ̂1 is efficient relative

to θ̂3

Conclusion: For the three estimators above,

• all three are unbiased,

• the second one is not consistent, and

• the sample average estimator (the first one) is the most efficient estimator of the three.

Notice that all three estimators are weighted averages of the sample data (even the second estimator

which can be thought of as a weighted average where we multiply the first observation with n and

all other observations with 0, i.e. θ̂2 = Y1 = 1
n
(nY1 + 0.Y1 + . . . + 0.Yn).) The conclusions that we

reached here can be generalized to the class of all unbiased and weighted averages of the data . . .

Theorem 18 (Efficiency of Y ). Let θ̂ be an estimator of the population mean (θ = µ) where

θ̂ = Y (ie, the estimator is the sample average). Now let θ̂∗ be any other estimator of the population

mean such that it is some weighted average of the data, ie., θ̂∗ = 1
n

∑n
i aiYi where a1, a2, . . . , an are

non random constants not equal to 1. Then, if θ̂∗ is unbiased, then var(θ̂) = var(Y ) < var(θ̂∗).

That is θ̂ = Y is the most efficient estimator among all unbiased estimators of the population mean

that are weighted averages of the sample.

The End
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PS. During the rest of the semester, we will be estimating equations of the type

Yi = β0 + β1X1i + β2X2i + . . . + βkXki + ui

where X1, X2, . . . , Xk are the variables that influence Y (in some causal way) and β1, β2, . . . βk are

the true underlying population parameters.

By estimating, we mean constructing estimators for β s. Thus our estimated equations will look

like

Yi = β̂0 + β̂1X1i + β̂2X2i + . . . + β̂kXki + ûi

We will be concerned about the properties of these estimators (β̂s), ie, are they unbiased, consistent,

efficient etc. Also, we will often be interested in various functions of population parameters (ex:

β2 + β3). What are the properties of similar function of estimators, ie is β̂2 + β̂3 an unbiased,

consistent and efficient estimator of β2 + β3?. Material covered in these last few lectures will be

useful in answering these questions.
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